1
|
Xu J, Wang Q, Wang S, Yang Y, Feng L. CoF 2 coupled MXene with facile active phase reconstruction for oxygen evolution reaction. Chem Commun (Camb) 2024; 60:11730-11733. [PMID: 39318266 DOI: 10.1039/d4cc04513k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The combined CoF2/MXene system was effective in the facile cobalt active species formation induced by surface reconstruction and charge redistribution to promote oxygen evolution reaction.
Collapse
Affiliation(s)
- Jiayu Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Qiaowei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
2
|
Guo D, Xu J, Liu G, Yu X. Hierarchically Structured Graphene Aerogel Supported Nickel-Cobalt Oxide Nanowires as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Molecules 2024; 29:1805. [PMID: 38675625 PMCID: PMC11054377 DOI: 10.3390/molecules29081805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The rational design of a heterostructure electrocatalyst is an attractive strategy to produce hydrogen energy by electrochemical water splitting. Herein, we have constructed hierarchically structured architectures by immobilizing nickel-cobalt oxide nanowires on/beneath the surface of reduced graphene aerogels (NiCoO2/rGAs) through solvent-thermal and activation treatments. The morphological structure of NiCoO2/rGAs was characterized by microscopic analysis, and the porous structure not only accelerates the electrolyte ion diffusion but also prevents the agglomeration of NiCoO2 nanowires, which is favorable to expose the large surface area and active sites. As further confirmed by the spectroscopic analysis, the tuned surface chemical state can boost the catalytic active sites to show the improved oxygen evolution reaction performance in alkaline electrolytes. Due to the synergistic effect of morphology and composition effect, NiCoO2/rGAs show the overpotential of 258 mV at the current density of 10 mA cm-2. Meanwhile, the small values of the Tafel slope and charge transfer resistance imply that NiCoO2/rGAs own fast kinetic behavior during the OER test. The overlap of CV curves at the initial and 1001st cycles and almost no change in current density after the chronoamperometric (CA) test for 10 h confirm that NiCoO2/rGAs own exceptional catalytic stability in a 1 M KOH electrolyte. This work provides a promising way to fabricate the hierarchically structured nanomaterials as efficient electrocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.)
| | - Jiaqi Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.)
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.)
| | - Xu Yu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Guo D, Xu J, Liu G, Yu X. Core-Shell CoS 2@MoS 2 with Hollow Heterostructure as an Efficient Electrocatalyst for Boosting Oxygen Evolution Reaction. Molecules 2024; 29:1695. [PMID: 38675517 PMCID: PMC11051863 DOI: 10.3390/molecules29081695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
It is imperative to develop an efficient catalyst to reduce the energy barrier of electrochemical water decomposition. In this study, a well-designed electrocatalyst featuring a core-shell structure was synthesized with cobalt sulfides as the core and molybdenum disulfide nanosheets as the shell. The core-shell structure can prevent the agglomeration of MoS2, expose more active sites, and facilitate electrolyte ion diffusion. A CoS2/MoS2 heterostructure is formed between CoS2 and MoS2 through the chemical interaction, and the surface chemistry is adjusted. Due to the morphological merits and the formation of the CoS2/MoS2 heterostructure, CoS2@MoS2 exhibits excellent electrocatalytic performance during the oxygen evolution reaction (OER) process in an alkaline electrolyte. To reach the current density of 10 mA cm-2, only 254 mV of overpotential is required for CoS2@MoS2, which is smaller than that of pristine CoS2 and MoS2. Meanwhile, the small Tafel slope (86.9 mV dec-1) and low charge transfer resistance (47 Ω) imply the fast dynamic mechanism of CoS2@MoS2. As further confirmed by cyclic voltammetry curves for 1000 cycles and the CA test for 10 h, CoS2@MoS2 shows exceptional catalytic stability. This work gives a guideline for constructing the core-shell heterostructure as an efficient catalyst for oxygen evolution reaction.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.); (G.L.)
| | - Jiaqi Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.); (G.L.)
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (J.X.); (G.L.)
| | - Xu Yu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Li Z, Chen F, Li C, Zhang Z, Kong F, Pu X, Lu Q. Bimetallic sulfide/N-doped carbon composite derived from Prussian blue analogues/cellulose nanofibers film toward enhanced oxygen evolution reaction. Dalton Trans 2024; 53:6041-6049. [PMID: 38470841 DOI: 10.1039/d3dt04336c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Exploiting effective, stable, and cost-efficient electrocatalysts for the water oxidation reaction is highly desirable for renewable energy conversion techniques. Constructional design and compositional manipulation are widely used approaches to efficaciously boost the electrocatalytic performance. Herein, we designed a NiFe-bimetallic sulfide/N-doped carbon composite via a two-step thermal treatment of Prussian blue analogues/cellulose nanofibers (PBA/CNFs) film. The NiFe-bimetallic sulfide/N-doped carbon composite displayed enhanced OER performance in an alkaline environment, with an overpotential of 282 mV at 10 mA cm-2, a Tafel slope of 59.71 mV dec-1, and good stability, making the composite a candidate electrocatalyst for OER-related energy equipment. The introduction of CNFs in the precursor prevented the aggregation of PBA nanoparticles (NPs), exposed more active sites, and the resulting carbon substrate enhanced the electroconductivity of the composite. Moreover, the synergistic effect of Ni and Fe in the bimetallic sulfide could modulate the configuration of electrons, enrich the catalytically active sites, and augment the electric conductivity, thus ameliorating the OER performance. This study broadens the application of MOF-CNF composites to construct hierarchical structures of metal compounds and provides some thoughts for the development of cost-effective precious-metal-free catalysts for electrocatalysis.
Collapse
Affiliation(s)
- Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Feiyang Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chunlong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Pu
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Zou Y, Jin M, Zhu D, Tang YJ. Laser-induced immobilization of an amorphous iron-phosphate/Fe 3O 4 composite on nickel foam for efficient water oxidation. Chem Commun (Camb) 2023. [PMID: 38015465 DOI: 10.1039/d3cc04070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A laser-induced immobilization strategy is applied to prepare an amorphous iron-phosphate/Fe3O4 (L-FePO) composite on a nickel foam (NF) support. By laser-irradiating an iron hydrogen phosphate (FeHP) precursor, a melting and oxidation process leads to the generation of L-FePO with hierarchical pores and an amorphous structure. L-FePO shows exceptional electrocatalytic performance for the OER in an alkaline electrolyte, demonstrating an overpotential of 256 mV at 100 mA cm-2, a Tafel slope of 71 mV dec-1, and good stability over 100 h. The active Fe3O4, partially dissolved phosphate, and newly formed FeOOH species provide abundant active sites, contributing to the excellent OER performance.
Collapse
Affiliation(s)
- Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Man Jin
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P. R. China.
| |
Collapse
|