1
|
Mavileti SK, Bila G, Utka V, Bilyy R, Bila E, Butoi E, Gupta S, Balyan P, Kato T, Bilyy R, Pandey SS. Squaraine-Peptide Conjugates as Efficient Reporters of Neutrophil Extracellular Traps-Mediated Chronic Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9140-9154. [PMID: 39898628 PMCID: PMC11826884 DOI: 10.1021/acsami.4c20658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The excessive and uncontrolled release of neutrophil extracellular traps (NETs) is increasingly linked to the pathogenesis of various inflammatory diseases, cardiovascular disorders, and cancers. Real-time, non-invasive detection of NETs is crucial for understanding their role in disease progression and developing targeted therapies. Current NETs detection methods often lack the necessary specificity and resolution, particularly in vivo and ex vivo settings. To address this, we have developed novel near-infrared squaraine-peptide conjugates by rational molecular design as reporters of NETosis by targeting the protease activity of neutrophil elastase (NE). These self-quenching, cell-impermeable probes enable the precise real-time detection and imaging of NETs. The Förster resonance energy transfer (FRET)-based probe, Hetero-APA, demonstrated high specificity in detecting NETs in vitro and in vivo, generating strong fluorescence in NETs-rich environments. To overcome the limitations of FRET-based probes for ex vivo imaging, we designed SQ-215-NETP, a non-FRET-based probe that covalently binds to the NE. SQ-215-NETP achieved an unprecedented imaging resolution of 90 nm/pixel in human coronary thrombi, marking the first report of such high resolution with a low molecular weight probe. Additionally, SQ-215-NETP effectively detected NETs by flow cytometry. These results highlight the potential of these probes in NETosis detection, offering promising tools for enhanced diagnostics and therapeutic strategies in managing NET-mediated inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Sai Kiran Mavileti
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Galyna Bila
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Valentyn Utka
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
| | | | - Evgenia Bila
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Organic Chemistry, Ivan Franko National
University of Lviv, Kyrylo
and Mefodiy Street 6, 79005 Lviv, Ukraine
| | - Elena Butoi
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Shekhar Gupta
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Priyanka Balyan
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Tamaki Kato
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| | - Rostyslav Bilyy
- Lectinotest
R&D, Mechanichna
Str 2, 79000 Lviv, Ukraine
- Department
of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
- Institute
of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Shyam S. Pandey
- Graduate
School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196 Kitakyushu, Japan
| |
Collapse
|
2
|
Sharma R, Rodriguez-Rios M, Crossland J, Septiyana M, Megia-Fernandez A, Klausen M, Bradley M. A multi-valent polymyxin-based fluorescent probe for the detection of Gram-negative infections. J Mater Chem B 2025; 13:882-887. [PMID: 39717883 DOI: 10.1039/d4tb01786b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
A multi-branched fluorogenic probe for the rapid and specific detection of Gram-negative bacteria is reported. Three Gram-negative-targeting azido-modified polymyxins were clicked onto a trivalent scaffold functionalised with the environmental green-emitting fluorophore 7-nitrobenz-2-oxa-1,3-diazole. The probe allowed wash-free detection of target bacteria with increased sensitivity and lower limits of detection compared to monovalent probes.
Collapse
Affiliation(s)
- Richa Sharma
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Maria Rodriguez-Rios
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - James Crossland
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Maulida Septiyana
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram, Indonesia
| | - Alicia Megia-Fernandez
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Maxime Klausen
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, London, E1 1HH, UK.
| |
Collapse
|
3
|
Alghamdi ZS, Sharma R, Kiruthiga N, Üçüncü M, Klausen M, Santra M, Devi U, Venkateswaran S, Lilienkampf A, Bradley M. Lighting up Mycobacteria with membrane-targeting peptides. Org Biomol Chem 2024; 22:8781-8786. [PMID: 39397698 DOI: 10.1039/d4ob01333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report a series of fluorescent probes based on mycobacteria membrane-associated disruption peptide, containing either L- or D-amino acids which were originally designed to kill Mycobacterium tuberculosis via membrane disruption. These peptides were decorated with "always on" and environmentally sensitive fluorophores and showed the rapid and efficient labelling of Mycobacterium smegmatis, with labelling of Mycobacterium tuberculosis demonstrated by two of the probes.
Collapse
Affiliation(s)
- Zainab S Alghamdi
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Richa Sharma
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Nancy Kiruthiga
- Indian Council of Medical Research (ICMR) - National Institute for Research in Tuberculosis, No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai - 600 031, India
| | - Muhammed Üçüncü
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
- Department of Analytical Chemistry, Faculty of Pharmacy, İzmir Katip Çelebi University, İzmir, Turkey
| | - Maxime Klausen
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Uma Devi
- Indian Council of Medical Research (ICMR) - National Institute for Research in Tuberculosis, No. 1, Mayor Sathiyamoorthy Road, Chetpet, Chennai - 600 031, India
| | - Seshasailam Venkateswaran
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, Whitechapel, London, E1 1HH, UK.
| | - Annamaria Lilienkampf
- School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Mark Bradley
- Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, Whitechapel, London, E1 1HH, UK.
| |
Collapse
|
4
|
Skorenski M, Ji S, Verhelst SHL. Covalent activity-based probes for imaging of serine proteases. Biochem Soc Trans 2024; 52:923-935. [PMID: 38629725 DOI: 10.1042/bst20231450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.
Collapse
Affiliation(s)
- Marcin Skorenski
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| |
Collapse
|