1
|
Huang W, Chen Z, Cheng P, Shi W. Strong size sieving effect in a rigid oxalate-based metal-organic framework for selective lithium extraction. Chem Commun (Camb) 2024; 60:11972-11975. [PMID: 39344498 DOI: 10.1039/d4cc04101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An oxalate-based metal-organic framework Eu-C2O4 was synthesized at gram-scale and studied as a selective adsorbent for Li+ ions, and it exhibited high Li+/Na+ selectivity in aqueous solution. A detailed mechanism study revealed that the key was the well-matched chelating sites of the framework for Li+ ion extraction.
Collapse
Affiliation(s)
- Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Hu G, Wang Z, Xia C, Wang X, He H, Nie Z, Wang S, Li W. Regulating the Interface Polarity Distribution of Zr-Based MOFs by Amino Acid-Like Ligand Functionalization Enables Efficient Recovery of Gold. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42976-42985. [PMID: 39091115 DOI: 10.1021/acsami.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The recovery of gold from industrial effluents is crucial for environmental conservation, sustainable resource management, and promoting the green development of gold resources. We designed a Zr-based MOF (UKM-78) by incorporating functional organic ligands that resemble amino groups, using MOFs' inherent sieving effect for ion separation. This novel material exhibited enhanced gold recovery under acidic conditions, with an adsorption capacity three times and an adsorption rate four times higher than those of nonfunctionalized UKM-77. Notably, UKM-78 efficiently captured gold solutions at concentrations as low as 1 ppm and achieved an adsorption rate exceeding 90%, owing to the electrostatic interactions and coordination between its functionalized groups and the synergistic effect of its porous structure. Despite multiple regeneration cycles, UKM-78 retains 99.4% of its adsorption capacity. X-ray photoelectron spectroscopy (XPS), kinetic studies, and thermodynamics collectively demonstrated that Au(III) binding on UKM-78 involved cooperative electrostatic interactions and chemical adsorption through coordination. This study highlights the potential of MOFs for efficient and sustainable recovery of gold from complex waste streams.
Collapse
Affiliation(s)
- Guangyuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhiwei Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Changqing Xia
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xinliang Wang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Hongxing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Weili Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
3
|
Wu M, Tian H, Gao X, Cui X, Li Z, Li K, Zhao X. Diamino-functionalized metal-organic framework for selective capture of gold ions. CHEMOSPHERE 2024; 362:142686. [PMID: 38909517 DOI: 10.1016/j.chemosphere.2024.142686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Adsorptive recovery of valuable gold (Au) ions from wastes is vital but still challenged, especially regarding adsorption capacity and selectivity. A novel M - 3,5-DABA metal-organic framework (MOF) adsorbent was prepared via anchoring 3,5-diaminobenzoic acid (3,5-DABA) molecule in the MOF-808 matrix. Benefiting from the positive charge property, dense amino groups (3.2 mmol g-1) and high porosity, the adsorption capacity of M - 3,5-DABA reaches 1391.5 mg g-1 (pH = 2.5) and adsorption equilibrium is attained in 5 min. This amino-based material shows excellent selectivity towards various metal ions, evading the poor selectivity problem of classical thiol groups (e.g. for Ag+, Cu2+, Pb2+ and Hg2+ ions). In addition, the regeneration was easily achieved via using a hydrochloric acid-thiourea eluent. Experimental analysis and density functional theory (DFT) calculation show the amino group works as a reductant for Au(III) ions and meanwhile acts as an active site for adsorbing Au(III) ions together with the μ-OH group. Thus, M - 3,5-DABA can act as a potential adsorbent for Au(III) ions, and our work offers a viable strategy to construct novel MOF-based adsorbents.
Collapse
Affiliation(s)
- Mengdi Wu
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Heli Tian
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xinli Gao
- Instrumental Analysis Center, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Xinge Cui
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Zhengjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Kunjie Li
- Department of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xudong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Wang C, Feng X, Tian Y, Huang X, Shang S, Liu H, Song Z, Zhang H. Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange. ENVIRONMENTAL RESEARCH 2024; 251:118651. [PMID: 38479718 DOI: 10.1016/j.envres.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
5
|
Zhu M, Wang H, Liu X, Wang S, Zhang D, Peng Z, Fu L, Chen Y, Xiang D. Synthesis of metal-organic frameworks with multiple nitrogen groups for selective capturing Ag(I) from wastewater. J Colloid Interface Sci 2024; 663:761-774. [PMID: 38437755 DOI: 10.1016/j.jcis.2024.02.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
As a noble metal with extremely high economic benefits, the recovery of silver ions has attracted a particular deal of attention. However, it is a challenge to recover silver ions efficiently and selectively from aqueous solutions. In this research, the novel metal-organic frameworks (MOFs) adsorbent (Zr-DPHT) is prepared for the highly efficient and selective recovery of silver ions from wastewater. Experimental findings reveal that Zr-DPHT's adsorption of Ag(I) constitutes an endothermic process, with an optimal pH of 5 and exhibits a maximum adsorption capacity of 268.3 mg·g-1. Isotherm studies show that the adsorption of Ag(I) by Zr-DPHT is mainly monolayer chemical adsorption. Kinetic studies indicate that the internal diffusion of Ag(I) in Zr-DPHT may be the rate-limiting step. The mechanism for Ag(I) adsorption on Zr-DPHT involves electrostatic interactions and chelation. In competitive adsorption, Ag(I) has the largest partition coefficient (9.64 mL·mg-1), indicating a strong interaction between Zr-DPHT and Ag(I). It is proven in the adsorption-desorption cycle experiments that Zr-DPHT has good regeneration performance. The research results indicate that Zr-DPHT can serve as a potential adsorbent for efficiently and selectively capturing Ag(I), providing a new direction for MOFs in the recycling field of precious metals.
Collapse
Affiliation(s)
- Manying Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Hao Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Dekun Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Zhengwu Peng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Yuefeng Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Dawei Xiang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| |
Collapse
|
6
|
Ali I, Wan P, Peng C, Tan X, Sun H, Li J. Integration of metal organic framework nanoparticles into sodium alginate biopolymer-based three-dimensional membrane capsules for the efficient removal of toxic metal cations from water and real sewage. Int J Biol Macromol 2024; 266:131312. [PMID: 38582471 DOI: 10.1016/j.ijbiomac.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China.
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiao Tan
- College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Yin Y, Fan C, Cheng L, Shan Y. Adsorption of perfluoroalkyl substances on deep eutectic solvent-based amorphous metal-organic framework: Structure and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118261. [PMID: 38272299 DOI: 10.1016/j.envres.2024.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|