1
|
Zhang R, Tian X, Zuo M, Zhang T, Pangannaya S, Hu XY. Bionic Artificial Leaves Based on AIE-Active Supramolecular Hydrogel for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504993. [PMID: 40344372 DOI: 10.1002/advs.202504993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/17/2025] [Indexed: 05/11/2025]
Abstract
A novel hydrogel-based biomimetic artificial leaf is fabricated by integrating host-guest interactions with covalent bonding. Specifically, a water-soluble tetraphenylethylene-embedded pillar[5]arene (m-TPEWP5), which exhibits aggregation-induced emission (AIE) property, is synthesized as the host molecule. An amphiphilic guest G is introduced to form a stable complex (HGSM) via non-covalent interactions. Subsequent copolymerization of HGSM with gelatin methacryloyl (GelMA) yields a hydrogel network (HGGelMA), which not only exhibits AIE characteristics but also enables encapsulation of the acceptor eosin Y (ESY), thereby resulting in the construction of an artificial light-harvesting system HGGelMA⊃ESY that serves as a biomimetic leaf. To emulate natural photosynthesis more closely and optimize the utilization of the collected energy, two organic reactions are performed within this artificial leaf: dehalogenation of bromoacetophenone derivatives and coupling of benzylamine. These reactions demonstrate remarkable catalytic activity and recycling ability during the photocatalytic process.
Collapse
Affiliation(s)
- Rongbo Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tao Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Srikala Pangannaya
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- Department of Chemistry, School of Humanities and Sciences, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Hyderabad, Telangana, 500090, India
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| |
Collapse
|
2
|
Zhang R, Xie Y, Li X, Wang K, Hu XY. Supramolecular artificial light-harvesting systems incorporating aggregation-induced emissive components: from fabrication to efficient energy conversion. Chem Commun (Camb) 2025; 61:6851-6863. [PMID: 40259811 DOI: 10.1039/d4cc06816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The harvesting and utilization of light energy have increasingly captivated researchers. The construction of artificial light harvesting systems (ALHSs) through supramolecular assemblies has emerged as a prominent approach. Following the discovery of the aggregation-induced emission (AIE) phenomenon, AIE luminogens (AIEgens) have been extensively employed to develop ALHSs, in which these molecules are assembled into nanoparticles or nanoaggregates to enhance energy transfer efficiency. In this review, we summarize recent research advances in supramolecular ALHSs based on AIEgens, including some representative examples reported by our research group and others. In particular, different design strategies for ALHSs formed by self-assembly of host-guest complexes and other building blocks such as macrocyclic and amphiphilic molecules have been discussed over the past three years. For host-guest complexes with AIE activity, we analyze the design principles of AIE-active hosts or guests, and how their self-assembly influences the efficiency of ALHSs. For AIE-active macrocycles or amphiphiles that do not form host-guest complexes, we discuss how they can independently self-assemble into ALHSs. Finally, future research directions for the utilization of AIEgens in the development of ALHSs are discussed.
Collapse
Affiliation(s)
- Rongbo Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Yutong Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Xuyang Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
3
|
Sun G, Li M, Li J, Feng J, Yan Z, Sun Y, Pu L, Zhu J, Tang Y, Yao Y. Enhanced emission in a supramolecular artificial light-harvesting system for a photocatalytic thiol-ene reaction. Chem Commun (Camb) 2025; 61:6360-6363. [PMID: 40171745 DOI: 10.1039/d5cc00339c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A novel supramolecular artificial light-harvesting system (LHS) was constructed through the host-guest assembly of water-soluble phosphate-pillar[5]arene (WPP5), AIE-enhanced donor (BND), and Eosin Y (ESY) acceptor. This LHS could significantly promote the photocatalytic thiol-ene click reaction of thiophenol and styrene derivatives.
Collapse
Affiliation(s)
- Guangping Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Menghang Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Jiaji Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Zhenhao Yan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yiwen Sun
- School of Physical Science and Technology, Nantong University, Nantong 226019, China
| | - Liangtao Pu
- School of Urban Construction, Changzhou University, Changzhou 213164, China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Xu XQ, Song YR, Cao JH, Li WJ, Zhu Y, Zhang DY, Wang W, Wang XQ, Yang HB. Artificial light harvesting systems based on novel AIEgen-branched rotaxane dendrimers for photocatalyzed functionalization of C-H bonds. Chem Sci 2025; 16:5786-5796. [PMID: 40092604 PMCID: PMC11905990 DOI: 10.1039/d5sc00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Aiming at the construction of novel luminescent materials for practical use, a new type of AIEgen-branched rotaxane dendrimer with up to 42 TPE units precisely distributed with dendrimer skeletons was successfully synthesized. Attributed to such high-density topological arrangements of AIEgens, these novel rotaxane-branched dendrimers revealed interesting generation-dependent AIE behaviors. Moreover, taking advantage of the efficient Förster resonance energy transfer (FRET) process, novel artificial light-harvesting systems (LHSs) were successfully constructed by the employment of ESY as energy acceptors, which revealed significantly enhanced photocatalytic performances in the functionalization of C-H bonds along with an increase in dendrimer generation, thus indicating an impressive generation effect.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Yi-Ru Song
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Jiang-Han Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xu-Qing Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University Shanghai 200241 China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University Shanghai 200062 China
| |
Collapse
|
5
|
Li ZW, Huang A, Wang Z, Gao R, Lan B, Chen G, Ouyang G. Solvent-mediated subcomponent self-assembly of covalent metallacycles for hierarchical porous materials synthesis. Chem Commun (Camb) 2025; 61:4836-4839. [PMID: 40035481 DOI: 10.1039/d5cc00688k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We report a solvent-mediated subcomponent self-assembly strategy for synthesizing tetranuclear and triangular covalent metallacycles. The results demonstrate that the polarity of solvent significantly influences the structural outcome of metallacycles, and the square-shaped metallacycles can serve as building blocks for the construction of hierarchical porous materials such as metallacycle-based hydrogen-bonded organic frameworks (mHOFs) and metal-organic frameworks (mMOFs).
Collapse
Affiliation(s)
- Zhi-Wei Li
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhenguo Wang
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rui Gao
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Bang Lan
- Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China.
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Wang K, Yan K, Liu Q, Wang Z, Hu XY. The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules 2024; 29:5854. [PMID: 39769942 PMCID: PMC11679249 DOI: 10.3390/molecules29245854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The advancement of synthetic host-guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the creation of intricately organized architectures. Within the realm of macrocycles, these cavitands stand out as privileged scaffolds owing to their synthetic adaptability, excellent topological structures, and unique recognition properties. So far, extensive investigations have been conducted on various applications of calix[4]resorcinarene-based cavitands. In this review, we will elaborate on their diverse functions, including catalysis, separation and purification, polymeric materials, sensing, battery materials, as well as drug delivery. This review aims to provide a holistic understanding of the multifaceted roles of calix[4]resorcinarene-based cavitands across various applications, shedding light on their contributions to advancing the field of supramolecular chemistry.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Kejia Yan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Zhiyao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
7
|
Zhang Q, Dang X, Cui F, Xiao T. Supramolecular light-harvesting systems utilizing tetraphenylethylene chromophores as antennas. Chem Commun (Camb) 2024; 60:10064-10079. [PMID: 39176422 DOI: 10.1039/d4cc03693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Efficient utilization of light energy is crucial for various technological applications ranging from solar energy conversion to optoelectronic devices. Supramolecular light-harvesting systems (LHS) have emerged as promising platforms for enhancing light absorption and energy transfer process. In this Feature Article, we highlight the utilization of tetraphenylethylene (TPE) chromophores as antennas in supramolecular assemblies for light harvesting applications. TPE, as an archetypal aggregation-induced emission (AIE) chromophore, offers unique advantages such as high photostability and efficient light-harvesting capabilities upon self-assembly. We discuss the design principles and synthetic strategies employed to construct supramolecular assemblies incorporating TPE chromophores, elucidating their roles as efficient light-harvesting antennas. Furthermore, we delve into the mechanisms governing energy transfer processes within these assemblies, such as Förster resonance energy transfer (FRET). The potential applications of these TPE-based supramolecular systems in various fields, including photocatalysis, reactive oxygen species generation, optoelectronic devices and sensing, are explored. Finally, we provide insights into future directions and challenges in the development of next-generation supramolecular LHSs utilizing TPE chromophores.
Collapse
Affiliation(s)
- Qiaona Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaoman Dang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Fengyao Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
8
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
9
|
Chen D, Xiao T, Monflier É, Wang L. Multi-step FRET systems based on discrete supramolecular assemblies. Commun Chem 2024; 7:88. [PMID: 38637669 PMCID: PMC11026437 DOI: 10.1038/s42004-024-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) from the excited state of the donor to the ground state of the acceptor is one of the most important fluorescence mechanisms and has wide applications in light-harvesting systems, light-mediated therapy, bioimaging, optoelectronic devices, and information security fields. The phenomenon of sequential energy transfer in natural photosynthetic systems provides great inspiration for scientists to make full use of light energy. In recent years, discrete supramolecular assemblies (DSAs) have been successively constructed to incorporate donor and multiple acceptors, and to achieve multi-step FRET between them. This perspective describes recent advances in the fabrication and application of DSAs with multi-step FRET. These DSAs are categorized based on the non-covalent scaffolds, such as amphiphilic nanoparticles, host-guest assemblies, metal-coordination scaffolds, and biomolecular scaffolds. This perspective will also outline opportunities and future challenges in this research area.
Collapse
Affiliation(s)
- Dengli Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Éric Monflier
- Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin, Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Lens, France.
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Sun G, Li M, Cai L, Zhu J, Tang Y, Yao Y. Carbazole-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation reaction. Chem Commun (Camb) 2024; 60:1412-1415. [PMID: 38205596 DOI: 10.1039/d3cc05405e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A carbazole-based artificial light-harvesting system (LHS) was successfully fabricated based on the supramolecular assembly of AIE-enhanced donor (CTD), water-soluble phosphate-pillar[5]arene (WPP5), and eosin Y (ESY) acceptor. The formed WPP5-CTD possessed remarkable AIE emission, featuring an ideal energy donor for light harvesting. After encapsulation of ESY, the energy of WPP5-CTD was efficiently transferred to ESY in WPP5-CTD-ESY, and the antenna effect was 38.5, which was much higher than that of recently reported LHSs. Notably, WPP5-CTD-ESY was successfully utilized as a photocatalyst to realize the cross-coupling dehydrogenation reaction of diphenylphosphine oxide and benzothiazole derivatives, suggesting great potential for aqueous photocatalytic applications of this LHS.
Collapse
Affiliation(s)
- Guangping Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Menghang Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Lijuan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|