1
|
Wang W, Li Y, Xiao X, Li G. Advances of functional graphdiyne in separation and detection. Talanta 2025; 287:127673. [PMID: 39904251 DOI: 10.1016/j.talanta.2025.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Separation and detection technologies are essential tools for ensuring quality, safety and efficiency across various industries. Graphdiyne (GDY), a carbon material made up of alkyne bonds conjugated with benzene rings to form a planar all-carbon network, is increasingly utilized in the fields of separation and detection. GDY is becoming an ideal separation medium due to its adjustable pore sizes, unique alkyne-rich framework, and easy to be functionalized. On the other hand, GDY shows great potential in detection with the advantages of efficient photoelectric effect, high carrier mobility, and large surface areas to provide active sites. This review summarizes the progress of functional GDY in separation and detection from 2011 to 2024. Various synthesis methods were introduced on improving the properties of GDY in separation and detection. Efforts have increasingly focused on the development of functional GDY in separation functionalities such as magnetic and membranous separations. Moreover, the application of functional GDY in detection technologies are discussed such as electrochemical, spectroanalysis, and dual-mode approaches. Finally, the promising research directions and prospects of functional GDY are discussed to explore further applications in both separation and detection.
Collapse
Affiliation(s)
- Weibin Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - You Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Wang H, Zhang X, Liu J, Chen C. Modulating the electronic structure of graphdiyne-based nanomaterials for engineering nano-bio interfaces in biomedical applications. Adv Drug Deliv Rev 2025; 220:115570. [PMID: 40147533 DOI: 10.1016/j.addr.2025.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Graphdiyne (GDY), a two-dimensional (2D) carbon allotrope featuring a unique electronic structure, has attracted considerable attention due to its outstanding properties and potential applications in various fields, particularly in biomedicine due to its exceptional surface area, tunable electronic structure, and biocompatibility. Although promising, this field is still in the proof-of-concept stage due to incomplete understanding of the effects of structural regulation, particularly electronic structure, of GDY-based nanomaterials on their nano-bio interfaces, which seriously hinders the research of GDY-based nanomaterials in the biomedical field. To provide a comprehensive understanding of the relationship between electronic structures and nano-bio interfaces, this review focuses on the modulation of the electronic structure of GDY-based nanomaterials and its implications for engineering nano-bio interfaces for biomedical applications. Firstly, we delve into the intrinsic electronic properties of GDY, including its bandgap tunability and high carrier mobility, which are critical for its functionality in biomedical applications. We then discuss strategies for modulating these properties through oxidation, nonmetallic doping, covalent modification, and metal loading, aiming to optimize the electronic structure of GDY-based nanomaterials for superior performance in specific biomedical contexts, such as biomedical imaging, surface and interface catalysis, free radical scavenging, and drug delivery. Furthermore, we provide an overview of the methodologies for the investigation of these electronic properties, including theoretical simulation, characterization techniques, and real-time analysis of electron transfer at the nano-bio interfaces, highlighting their roles in advancing our understanding and guiding the design of novel GDY-based materials. Finally, this review provides an outlook on future research directions aimed at further optimizing the design of GDY-based nanomaterials and nano-bio interfaces, emphasizing the need for interdisciplinary collaboration to overcome current challenges and to fully realize the potential of GDY-based nanomaterials in biomedical applications. These principles are anticipated to facilitate the future development and clinical translation of precise, safe, and effective nanomedicines with intelligent theranostic features.
Collapse
Affiliation(s)
- Hui Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Zhang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Zhou Y, Zhang S, Liu H, Yi Y, Zhu G. The electroreduction-free stripping analysis of copper (II) ions and the voltammetric detection of nonylphenol and tetracycline based on graphdiyne/carbon nanotubes. Talanta 2025; 285:127347. [PMID: 39657524 DOI: 10.1016/j.talanta.2024.127347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The heavy metal ions (HMI) and π-electronical pollutants are two main types of environmental water contaminants, thus designing a universal sensor for their detection is considerable important. Meanwhile, graphdiyne (GDY) as a star material exhibits many unique advantages, especially superior adsorption and self-reducing property to HMI as well as great affinity to π-electron targets. Herein, by low-cost utilizing carbon nanotubes (CNTs) as the template dedicated to improve the conductivity and dispersibility of GDY, a multifunctional nanohybrid GDY/CNTs was prepared and then revealed successfully as a universal electrochemical sensing material for the HMI and π-electronical pollutants by adopting three models: (a) based on the in-situ adsorption and self-reduction capabilities of GDY towards HMI, an innovative electroreduction-free stripping voltammetry (FSV) sensing strategy was proposed for HMI detection via adopting Cu2+ as a representative, which can effectively avoid the electroreduction process compared with the common anodic stripping voltammetry method; (b) by selecting nonylphenol (NP) and tetracycline (TC) as two representative targets, the sensing performances of GDY/CNTs for the π-electronical pollutants were also confirmed. After optimizing the related experimental parameters, the as-prepared GDY/CNTs exhibits superior analytical performances (the obtained detection limits for Cu2+, NP and TC are respectively 1.6 nM, 6.67 nM and 1.67 nM coupled with the linearities of 0.005-10.0 μM, 0.02-25.0 μM and 0.005-6.0 μM) owing to the synergistic advantages of GDY and CNTs. This work revealed the as-prepared GDY/CNTs nanohybrids can be utilized as a robust universal sensing material for HMI and pollutants consisting of π-electrons, and especially the proposed FSV sensing strategy is very promising, exhibiting great potential applications.
Collapse
Affiliation(s)
- Yifan Zhou
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shuhao Zhang
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, PR China.
| |
Collapse
|
4
|
Hao W, He J, Wu J, Cai L, Wang Y, Fang G, Wang S. Built-in potential-regulated and exogenous excited electrochemiluminescence sensor based on dual-monomers molecularly imprinted polymer for the biomimetic detection of thiabendazole. Food Chem 2025; 465:141984. [PMID: 39541690 DOI: 10.1016/j.foodchem.2024.141984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnS2NSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate. The cyclic transformation of electron pairs (Sn2+/Sn4+) on SnS2NSs catalyzed the generation of sulfate anion radicals to amplify electrochemiluminescence signals. Due to the complementary and synergistic interaction of functional monomers, high affinity imprinted cavities were formed to recognize TBZ. MIECLS had a wide detection range of 1 × 10-9-1 × 10-5 mol L-1 with the limit of detection of 1.69 × 10-10 mol L-1 and had huge application potential to detect pesticide residues.
Collapse
Affiliation(s)
- Wen Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingwen He
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yifei Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Hu Y, Hu B, Lan H, Gong J, Hu R, Wang D, Zhang WD, Yan M, Wang Q, Liu Y, Xia H, Yao M, Du M. Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6161-6174. [PMID: 39731547 DOI: 10.1021/acsami.4c14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization. Building on this enhanced data processing framework, we developed an entropy-engineered synthesis approach specifically designed to produce stable, nanometric copper and cobalt (CuCo) solid solution alloys. Under conditions of -0.425 V (vs RHE), the CuCo alloy exhibited nearly 100% Faraday efficiency (FE) and a high ammonia production rate of 232.17 mg h-1 mg-1. Stability tests in a simulated industrial environment showed that the catalyst maintained over 80% FE and an ammonia production rate exceeding 170 mg h-1 mg-1 over a testing period of 120 h, outperforming most reported catalysts. To delve deeper into the synergistic interaction mechanisms between Cu and Co, in situ Raman spectroscopy was utilized for real-time monitoring, and density functional theory (DFT) calculations further substantiated our findings. These results not only highlight the exceptional catalytic performance of the CuCo alloy but also reflect the effective electronic and energy interactions between the two metals.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Bo Hu
- College of Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, United States
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jiaxuan Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Renjing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Donghui Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Mo Yan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Qi Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Yulong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, China
| | - Mingde Yao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, 999077 Ma Liu Shui, Hong Kong, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China
| |
Collapse
|
6
|
Wang Z, Li Y, Shi Z, Wang X, Guo C, Li CM, Wu X. Implementation of π-π interaction in AuNPs@GDY to boost the bioelectrocatalysis in enzymatic biofuel cells. Bioelectrochemistry 2024; 158:108712. [PMID: 38636365 DOI: 10.1016/j.bioelechem.2024.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The main challenges (sluggish electron transfer, low energy density) hinder the future application of enzymatic biofuel cells (EBFCs), which urgent to take effective measures to solve these issues. In this work, a composite of Au nanoparticles decorated graphdiyne (AuNPs@GDY) is fabricated and employed as the carrier of enzyme (G6PDH), and a mechanism based on π-π interaction of electron transfer is proposed to understand bioelectrocatalysis processes. The results show that the AuNPs@GDY composite exhibits the highest current density among the three materials (GDY, AuNPs, and AuNPs@GDY), which is 3.4 times higher than that of GDY and 2.5 times higher than that of AuNPs. Furthermore, the results reveal that the AuNPs could increase the loading of enzymes and provide more active site for reaction, while GDY provides highly π-conjugated structure and unique sp/sp2-hybridized linkages interface. This work provides new insights to explore a theoretical basis for the development of more efficient bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Zhikai Wang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| | - Xiaohai Wang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| |
Collapse
|
7
|
Wu H, Wen Q, Luan X, Yang W, Guo L, Wei G. Facile Synthesis of Fe-Doped, Algae Residue-Derived Carbon Aerogels for Electrochemical Dopamine Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:2787. [PMID: 38732893 PMCID: PMC11086316 DOI: 10.3390/s24092787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.
Collapse
Affiliation(s)
- Hao Wu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| | - Weiwei Yang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; (H.W.); (Q.W.); (W.Y.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China;
| |
Collapse
|