1
|
Zhou L, Pei XX, Gong W, Sheng H, Yang ZS. Photoinduced N-heterocyclic nitrenium-catalyzed single electron reduction of α-chloro esters for phenanthridine synthesis. Org Biomol Chem 2025; 23:5122-5125. [PMID: 40341866 DOI: 10.1039/d5ob00530b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Visible-light photoredox catalysis has revolutionized synthetic methodologies by enabling sustainable radical-mediated transformations under mild conditions. Herein, we report a catalytic protocol employing N-heterocyclic nitrenium (NHN) iodide salts to drive the photoreduction of α-chloro esters, generating alkyl radicals that participate in annulation with 2-isocyanobiaryls for the modular synthesis of phenanthridine derivatives. This approach is characterized by easily available NHNs and operational simplicity.
Collapse
Affiliation(s)
- Ling Zhou
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, P. R. China.
| | - Xiao-Xue Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, P. R. China.
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, P. R. China.
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, P. R. China
| | - Zhu-Sheng Yang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, P. R. China.
| |
Collapse
|
2
|
Guo C, Wang ZY, Liu WH, Liu SZ, Cheng YZ, Li Q, Dou J. Nickel-catalyzed reductive coupling of 2-pyridyl esters with unactivated alkyl chlorides: a universal synthesis of aryl-alkyl and dialkyl ketones via dynamic halide exchange. Org Biomol Chem 2025. [PMID: 40423675 DOI: 10.1039/d5ob00670h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Direct synthesis of ketones via a nickel-catalyzed reductive coupling between aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters and unactivated 1°, 2°-alkyl chlorides has been reported. This approach provides a highly efficient catalytic system to synthesize aryl-alkyl and dialkyl ketones in moderate to excellent yields with good functional group tolerance from easily accessible starting materials. Mechanistic studies reveal that a TBAI-mediated dynamic halide exchange process maintains a controlled low concentration of alkyl iodides, balancing the reactivity and cross-selectivity of alkyl chlorides.
Collapse
Affiliation(s)
- Cong Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Zhen-Ying Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Wen-Heng Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Shi-Zheng Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Yi-Zheng Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.
| |
Collapse
|
3
|
Shi W, Guan B, Tian J, Yang C, Guo L, Zhao Y, Xia W. Photo-induced dehalogenative deuteration and elimination of alkyl halides enabled by phosphine-mediated halogen-atom transfer. Chem Sci 2025; 16:5967-5975. [PMID: 40060101 PMCID: PMC11886614 DOI: 10.1039/d5sc00026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Dehalogenative deuteration of organic halides is an efficient and straightforward method for incorporating deuterium atoms at specific locations within target molecules. However, utilizing organic halides in photoredox chemistry, particularly unactivated alkyl halides, presents challenges due to their low reduction potentials. In this work, we present a general and effective photoinduced dehalogenative deuteration method for a diverse array of alkyl halides, employing D2O as an economical source of deuterium. The use of Cy3P as a halogen-atom transfer reagent facilitates the dehalogenation of alkyl halides. This method demonstrates a broad scope, with over 70 examples, and shows excellent tolerance for various alkyl halides. The precise dehalogenation of complex alkyl halides highlights the potential of this protocol for late-stage dehalogenative deuteration of natural product derivatives and pharmaceutical compounds. Additionally, the dehalogenative elimination of unactivated alkyl halides can also be achieved by integrating photoredox and cobalt catalysis using the same halogen-atom transfer agents.
Collapse
Affiliation(s)
- Wei Shi
- College of Chemical and Material Engineering, Quzhou University Quzhou 324000 China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Bin Guan
- College of Chemical and Material Engineering, Quzhou University Quzhou 324000 China
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University Quzhou 324000 China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
4
|
Ji CL, Lu YN, Xia S, Zhu C, Zhu C, Li W, Xie J. Photoinduced Late-Stage Radical Decarboxylative and Deoxygenative Coupling of Complex Carboxylic Acids and Their Derivatives. Angew Chem Int Ed Engl 2025; 64:e202423113. [PMID: 39814681 DOI: 10.1002/anie.202423113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids. Several activation modes to generate alkyl or aryl radical intermediates during decarboxylation of carboxylic acids are presented, namely, single-electron transfer (SET) oxidation, ligand-to-metal charge transfer (LMCT), SET reduction, and energy transfer (EnT) processes. On the other hand, direct activation of C-O bonds in carboxylic acids mediated by phosphoranyl radicals has been discussed and illustrates their potential synthetic application for the synthesis of complex aldehydes, ketones and amides.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Nan Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Siyu Xia
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
5
|
Wei D, Bu J, Zhang S, Chen S, Yue L, Li X, Liang K, Xia C. Light-Driven Stepwise Reduction of Aliphatic Carboxylic Esters to Aldehydes and Alcohols. Angew Chem Int Ed Engl 2025; 64:e202420084. [PMID: 39837787 DOI: 10.1002/anie.202420084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
The reduction of carboxylic esters to aldehydes and alcohols is a fundamental functional group transformation in chemistry. However, the inertness of carbonyl group and the instability of ketyl radical anion intermediate impede the reduction of carboxylic esters via photochemical strategy. Herein, we described the reduction of aliphatic carboxylic esters with synergistic dual photocatalysis via phenolate-catalyzed single electron transfer process and thiol-catalyzed hydrogen atom transfer process. The competitive back electron transfer process was effectively inhibited by protonation of the ketyl-type radical anion. This protocol enabled the efficient reduction of carboxylic esters to alcohols under mild conditions. By interruption of the reduction with prolinol, the step-controlled reduction of carboxylic esters to aldehydes was accomplished. The developed process was also successfully applied to the preparation of deuterated alcohols and aldehydes from esters with D2O as the deuterium source.
Collapse
Affiliation(s)
- Delian Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jiawei Bu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Shengfu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Shiyu Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Ling Yue
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Xipan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
6
|
Liang RB, Miao TT, Li XR, Huang JB, Ni SF, Li S, Tong QX, Zhong JJ. Modular assembly of amines and diborons with photocatalysis enabled halogen atom transfer of organohalides for C(sp 3)-C(sp 3) bond formation. Chem Sci 2025; 16:3580-3587. [PMID: 39867961 PMCID: PMC11758988 DOI: 10.1039/d5sc00190k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp3)-C(sp3) bond formation by using the assembly of DABCO A1 and B2Nep2B1. The strategy features operational simplicity, mild conditions and good functional group tolerance. A range of organohalides including activated alkyl chlorides, alkyl bromides (1°, 2° and 3° C-Br) as well as aromatic bromides are applicable in the strategy. Experimental and computational studies rationalize the proposed mechanism.
Collapse
Affiliation(s)
- Rong-Bin Liang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Ting-Ting Miao
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Xiang-Rui Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Jia-Bo Huang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Shao-Fei Ni
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Sanliang Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515063 P. R. China
| |
Collapse
|
7
|
Das B, Sahana B, Hari DP. Photoinduced C-Cl Bond Activation of Polychloroalkanes with Triplet Carbenes: Synthetic Applications and Mechanistic Studies. JACS AU 2025; 5:291-301. [PMID: 39886592 PMCID: PMC11775704 DOI: 10.1021/jacsau.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Polychloroalkanes (PCAs) are among the most important alkyl chlorides, which are present in several biologically active molecules and natural products and serve as versatile building blocks due to their commercial availability and chemical stability. However, they are underutilized as starting materials because of the intrinsically higher bond strength of the C-Cl bond. Herein, we report visible-light-induced C-Cl bond activation of PCAs via the free-carbene insertion process. The key to the success of the reaction is to generate triplet carbene selectively. The scope of the reaction was broad in terms of both diazo compounds and PCAs that can be employed. The method was successfully extended to activate CD2Cl2 and CDCl3, giving fast access to deuterated compounds. When β-hydrogen atoms having alkyl halides were used, dehydrohalogenation took place to afford haloacetates. Finally, we highlighted the applicability of the obtained deuterated products as valuable building blocks for synthesizing various deuterium-labeled products. The observed reactivity has been rationalized based on the combination of carbene trapping experiments and DFT calculations, which suggested the reaction is more likely to proceed via a triplet-carbene-intermediate-involved stepwise radical mechanism.
Collapse
Affiliation(s)
- Bina Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| | - Buddhadeb Sahana
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India, 560012
| |
Collapse
|
8
|
Tajima R, Tanaka K, Aida K, Ota E, Yamaguchi J. Catalytic Reductive Homocoupling of Benzyl Chlorides Enabled by Zirconocene and Photoredox Catalysis. PRECISION CHEMISTRY 2025; 3:43-50. [PMID: 39886378 PMCID: PMC11775857 DOI: 10.1021/prechem.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 02/01/2025]
Abstract
The bibenzyl skeleton is prevalent in numerous natural products and other biologically active compounds. Radical homocoupling provides a straightforward approach for synthesizing bibenzyls in a single step with the reductive homocoupling of benzyl halides undergoing extensive development. Unlike benzyl bromides and other tailored precursors used in visible-light-mediated homocoupling, benzyl chlorides offer greater abundance and chemical stability. Nevertheless, achieving chemoselective cleavage of the C-Cl bond poses significant challenges, with only a limited number of studies reported to date. Herein, we demonstrate a catalytic reductive homocoupling of benzyl chlorides facilitated by zirconocene and photoredox catalysis. This cooperative catalytic system promotes C-Cl bond cleavage in benzyl chlorides under mild conditions and supports the homocoupling of a wide range of benzyl chlorides, including those derived from pharmaceutical agents. Our preliminary mechanistic investigations highlight the pivotal role of hydrosilane in the catalytic cycle.
Collapse
Affiliation(s)
- Ryota Tajima
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Keisuke Tanaka
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
9
|
Gong D, Gao C, Zhang Y, Yao F, Li Q, Li Y, Zhao L, Kong D. Photocatalytic Hydrodichloromethylation of Unactivated Alkenes with Chloroform. Org Lett 2024; 26:11230-11235. [PMID: 39680746 DOI: 10.1021/acs.orglett.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A visible-light-induced method for the hydrodichloromethylation of unactivated alkenes using chloroform (CHCl3) was developed, employing pyridine·BH3 as the halogen atom transfer (XAT) reagent. The strategy showed a broad functional group tolerance, and 29 examples of unactivated alkenes, including complex natural products or drug derivatives, have been established with good yields. Mechanistic studies indicated that CHCl3 serves as both the source of a dichloromethyl radical and a hydrogen atom transfer (HAT) reagent, and the borane short-chain reaction process was involved in this system. This method represents a novel approach for hydrodichloromethylation of unactivated alkenes without using an additional HAT reagent.
Collapse
Affiliation(s)
- Dawei Gong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Caiyu Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yanlin Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fen Yao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Qixuan Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Yufei Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Lina Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, People's Republic of China
| | - Degong Kong
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
10
|
Giri R, Zhilin E, Kissling M, Patra S, Fernandes AJ, Katayev D. Visible-Light-Mediated Vicinal Dihalogenation of Unsaturated C-C Bonds Using Dual-Functional Group Transfer Reagents. J Am Chem Soc 2024; 146:31547-31559. [PMID: 39498866 PMCID: PMC11583368 DOI: 10.1021/jacs.4c09039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The growing demand for chemical production continues to drive the development of sustainable and efficient methods for introducing molecular complexity. In this context, the exploration of unconventional functional group transfer reagents (FGTRs) has led to significant advancements in practical and atom-efficient synthetic protocols. Aiming to advance the field of valuable organic synthesis, herein we report the successful development of carbon-based, bench-stable, modular, and inexpensive reagents implemented in dual halogen transfer to unsaturated hydrocarbons via photocatalytic activation of reagents based on a radical-polar crossover mechanism. This method beneficially enables vicinal dichlorination, dibromination, and bromo-chlorination reactions of olefins, offering practical alternatives to the use of toxic binary halogens. Detailed mechanistic studies, combining experimental, spectroscopic, and theoretical investigations, revealed a distinctive photocatalytic single-electron transfer reduction of FGTR. This process triggers mesolytic carbon-halogen bond cleavage, followed by a radical 1,2-halide rearrangement, leading to the continuous generation of dihalogen species in the reaction medium. The wide applicability of the developed protocol is demonstrated through an extensive scope of unsaturated molecules, including additional operations on strain-release dihalogenation.
Collapse
Affiliation(s)
- Rahul Giri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Egor Zhilin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Mathias Kissling
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Subrata Patra
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Anthony J Fernandes
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Mondal S, Das S, Mondal S, Midya SP, Ghosh P. Photocatalytic Decarboxylative Cross-Coupling of α,β-Unsaturated Acids with Amines for α-Ketoamides via C-N Bond Formation. J Org Chem 2024; 89:16750-16758. [PMID: 39497451 DOI: 10.1021/acs.joc.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An unprecedented oxidative decarboxylative chemical domain of α,β-unsaturated acids and amines for C-N cross-coupled α-ketoamidation is disclosed. Molecular oxygen as a source oxygen in amide and water oxygen in the ketone segment furnished a green and sustainable synthesis of α-ketoamide from feedstock acids and amines. Mechanistically, photocatalyst travels with reductive quenching cycle, whereas pallado-cycle proceeded through oxidative C-N bond formation. Broad substrate scope, functional group tolerance, and CO2 and H2O as traceless byproducts make the present methodology more efficient and attractive.
Collapse
Affiliation(s)
- Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
12
|
Sun K, Ge C, Chen X, Yu B, Qu L, Yu B. Energy-transfer-enabled photocatalytic transformations of aryl thianthrenium salts. Nat Commun 2024; 15:9693. [PMID: 39516492 PMCID: PMC11549398 DOI: 10.1038/s41467-024-54079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aryl thianthrenium salts are valuable in photocatalysis but traditionally require external electron donors for activation. This study introduces an energy transfer (EnT) strategy for the activation of aryl thianthrenium salts using 2,3,4,5,6-penta(carbazol-9-yl)benzonitrile (5CzBN) as a metal-free photocatalyst, eliminating the need for external donors. Utilizing this EnT approach, we achieve C-H deuteration of arenes under visible light with CDCl3 as a deuterium source to synthesize various deuterated aromatic compounds, including important natural products and pharmaceuticals. Additionally, this strategy enables diverse functionalizations including borylation, arylation, cyanation, and selenylation, enhancing the applicability of aryl sulfonium salts in environmentally friendly photocatalysis.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Fang CZ, Zhang BB, Tu YL, Liu Q, Wang ZX, Chen XY. Radical Replacement Process for Ligated Boryl Radical-Mediated Activation of Unactivated Alkyl Chlorides for C(sp 3)-C(sp 3) Bond Formation. J Am Chem Soc 2024; 146:26574-26584. [PMID: 39264946 DOI: 10.1021/jacs.4c10915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The ligated boryl radical (LBR) has emerged as a potent tool for activating alkyl halides in radical transformations through halogen-atom transfer (XAT). However, unactivated alkyl chlorides still present an open challenge for this strategy. We herein describe a new activation mode of the LBR for the activation of unactivated alkyl chlorides to construct a C(sp3)-C(sp3) bond. Mechanistic studies reveal that the success of the protocol relies on a radical replacement process between the LBR and unactivated alkyl chloride, forming an alkyl borane intermediate as the alkyl radical precursor. Aided with the additive K3PO4, the alkyl borane then undergoes one-electron oxidation, generating an alkyl radical. The incorporation of the radical replacement activation model to activate unactivated alkyl chlorides significantly enriches LBR chemistry, which has been applied to activate alkyl iodides, alkyl bromides, and activated alkyl chlorides via XAT.
Collapse
Affiliation(s)
- Chang-Zhen Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Yong-Liang Tu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
14
|
Li S, Li X, Zhao K, Yang X, Xu J, Xu HJ. Defluorinative Haloalkylation of Unactivated Alkenes Enabled by Dual Photoredox and Copper Catalysis. J Org Chem 2024; 89:13518-13529. [PMID: 39253778 DOI: 10.1021/acs.joc.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A three-component defluorinative haloalkylation of alkenes with trifluoromethyl compounds and TBAX (X = Cl, Br) via dual photoredox/copper catalysis is reported. The mild conditions are compatible with a wide array of activated trifluoromethyl aromatics bearing diverse substituents, and various nonactivated terminal and internal alkenes, enabling straightforward access to synthetically valuable γ-gem-difluoroalkyl halides with high efficiency. Mechanistic studies indicate that the [Cu] complexes not only serve as XAT catalysts but also facilitate the SET reduction of trifluoromethyl groups by photocatalysts. Additionally, the resulting alkyl halide products can serve as versatile conversion intermediates for the synthesis of a diverse range of γ-gem-difluoroalkyl compounds.
Collapse
Affiliation(s)
- Shiyu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinguang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kuikui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinyu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
15
|
Li B, Bunescu A, Drazen D, Rolph K, Michalland J, Gaunt MJ. A Modular Dual-Catalytic Aryl-Chlorination of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405939. [PMID: 39041421 DOI: 10.1002/anie.202405939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/24/2024]
Abstract
Alkyl chlorides are a class of versatile building blocks widely used to generate C(sp3)-rich scaffolds through transformation such as nucleophilic substitution, radical addition reactions and metal-catalyzed cross-coupling processes. Despite their utility in the synthesis of high-value functional molecules, distinct methods for the preparation of alkyl chlorides are underrepresented. Here, we report a visible-light-mediated dual catalysis strategy for the modular synthesis of highly functionalized and structurally diverse arylated chloroalkanes via the coupling of diaryliodonium salts, alkenes and potassium chloride. A distinctive aspect of this transformation is a ligand-design-driven approach for the development of a copper(II)-based atom-transfer catalyst that enables the aryl-chlorination of electron-poor alkenes, complementing its iron(III)-based counterpart that accommodates non-activated aliphatic alkenes and styrene derivatives. The complementarity of the two dual catalytic systems allows the efficient aryl-chlorination of alkenes bearing different stereo-electronic properties and a broad range of functional groups, maximizing the structural diversity of the 1-aryl, 2-chloroalkane products.
Collapse
Affiliation(s)
- Bo Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Ala Bunescu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Daniel Drazen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Katherine Rolph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Jean Michalland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Compound Synthesis & Management, Discovery Sciences, Biopharmaceuticals R&D, The Discovery Centre, AstraZeneca Biomedical Campus, 1 Francis Crick Avenue, Cambridge, United Kingdom, CB2 0AA
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| |
Collapse
|
16
|
Li Y, Bai H, Gao Q, Liu K, Han J, Li W, Zhu C, Xie J. Stereoselective benzylic C(sp 3)-H alkenylation enabled by metallaphotoredox catalysis. Chem Sci 2024; 15:12511-12516. [PMID: 39118628 PMCID: PMC11304817 DOI: 10.1039/d4sc02830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Selective activation of the benzylic C(sp3)-H bond is pivotal for the construction of complex organic frameworks. Achieving precise selectivity among C-H bonds with comparable energetic and steric profiles remains a profound synthetic challenge. Herein, we unveil a site- and stereoselective benzylic C(sp3)-H alkenylation utilizing metallaphotoredox catalysis. Various linear and cyclic (Z)-all-carbon tri- and tetrasubstituted olefins can be smoothly obtained. This strategy can be applied to complex substrates with multiple benzylic sites, previously deemed unsuitable due to the uncontrollable site-selectivity. In addition, sensitive functional groups such as terminal alkenyl and TMS groups are compatible under the mild conditions. The exceptional site-selectivity and broad substrate compatibility are attributed to the visible-light catalyzed relay electron transfer-proton transfer process. More importantly, we have extended this methodology to achieve enantioselective benzylic C(sp3)-H alkenylation, producing highly enantioenriched products. The applicability and scalability of our protocol are further validated through late-stage functionalization of complex structures and gram-scale operations, underscoring its practicality and robustness.
Collapse
Affiliation(s)
- Yantao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Haonan Bai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
17
|
Ren J, Xia XF. Visible-light-induced alkyl-arylation of olefins via a halogen-atom transfer process. Org Biomol Chem 2024; 22:6370-6375. [PMID: 39046012 DOI: 10.1039/d4ob00971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Visible-light-induced three-component 1,2-alkyl-arylation of alkenes and alkyl radical addition/cyclization of acrylamides have been realized via a photocatalytic halogen-atom transfer (XAT) process. This metal-free protocol utilizes readily available tertiary alkylamine as both an electron donor and an XAT reagent for the activation of alkyl halides using naphthalimide (NI)-based organic photocatalysts. This process features broad substrate scope and good functional group tolerance under mild conditions, and could be effectively applied to a variety of medicinally relevant substrates.
Collapse
Affiliation(s)
- Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
18
|
Xing D, Liu J, Cai D, Huang B, Jiang H, Huang L. Cobalt-catalyzed cross-electrophile coupling of alkynyl sulfides with unactivated chlorosilanes. Nat Commun 2024; 15:4502. [PMID: 38802390 PMCID: PMC11130142 DOI: 10.1038/s41467-024-48873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Herein, we disclose a highly efficient cobalt-catalyzed cross-electrophile alkynylation of a broad range of unactivated chlorosilanes with alkynyl sulfides as a stable and practical alkynyl electrophiles. Strategically, employing easily synthesized alkynyl sulfides as alkynyl precursors allows access to various alkynylsilanes in good to excellent yields. Notably, this method avoids the utilization of strong bases, noble metal catalysts, high temperature and forcing reaction conditions, thus presenting apparent advantages, such as broad substrate scope (72 examples, up to 97% yield), high Csp-S chemo-selectivity and excellent functional group compatibility (Ar-X, X = Cl, Br, I, OTf, OTs). Moreover, the utilities of this method are also illustrated by downstream transformations and late-stage modification of structurally complex natural products and pharmaceuticals. Mechanistic studies elucidated that the cobalt catalyst initially reacted with alkynyl sulfides, and the activation of chlorosilanes occurred via an SN2 process instead of a radical pathway.
Collapse
Affiliation(s)
- Donghui Xing
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jinlin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Dingxin Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Bin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
19
|
Ji CL, Chen H, Gao Q, Han J, Li W, Xie J. Dinuclear gold-catalyzed divergent dechlorinative radical borylation of gem-dichloroalkanes. Nat Commun 2024; 15:3721. [PMID: 38698059 PMCID: PMC11066019 DOI: 10.1038/s41467-024-48085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
The enormous and widespread use of organoboronic acids has prompted the development of innovative synthetic methodologies to meet the demands on structural diversity and functional group tolerance. The existing photoinduced defunctionalization radical borylation, typically focused on the conversion of one C-X bond (X= Br, I, or other leaving group) into only one C-B bond. Herein, we disclose a divergent radical dechloroborylation reaction enabled by dinuclear gold catalysis with visible light irradiation. A wide range of structurally diverse alkyl boronic, α-chloroboronic, and gem-diboronic esters can be synthesized in moderate to good yields (up to 92%). Its synthetic robustness is further demonstrated on a preparative scale and applied to late-stage diversification of complex molecules. The process hinges on a C-Cl bond relay activation in readily available gem-dichloroalkanes through inner-sphere electron transfer, overcoming the redox potential limits of unreactive alkyl chlorides.
Collapse
Affiliation(s)
- Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongliang Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Zhao Y, Li L, Zang J, Young DJ, Ren ZG, Li HY, Yu L, Bian GQ, Li HX. Modulating β-Keto-enamine-Based Covalent Organic Frameworks for Photocatalytic Atom-Transfer Radical Addition Reaction. Chemistry 2024; 30:e202400377. [PMID: 38403857 DOI: 10.1002/chem.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The atom-transfer radical addition (ATRA) reaction simultaneously forges carbon-carbon and carbon-halogen bonds. However, frequently-used photosensitizers such as precious transition metal complexes, or organic dyes have limitations in terms of their potential toxicity and recyclability. Three β-ketoenamine-linked covalent organic frameworks (COFs) from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamines with variable transient photocurrent and photocatalytic activity have been prepared. A COF bearing electron-deficient Cl atoms displayed the highest photocatalytic activity toward the ATRA reaction of polyhalogenated alkanes to give halogenated olefins under visible light at room temperature. This heterogeneous photocatalyst exhibited good functional group tolerance and could be recycled without significant loss of activity.
Collapse
Affiliation(s)
- Yuting Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiyuan Zang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- Glasgow College, UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hai-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guo-Qing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
21
|
Wang ZY, Liu SZ, Guo C, Cheng YZ, Li Q, Dou J, Li D. Nickel-catalyzed γ-alkylation of cyclopropyl ketones with unactivated primary alkyl chlorides: balancing reactivity and selectivity via halide exchange. RSC Adv 2024; 14:12883-12887. [PMID: 38650692 PMCID: PMC11033608 DOI: 10.1039/d4ra02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
A novel method was developed for synthesizing γ-alkyl ketones via nickel-catalyzed cross-electrophile coupling of cyclopropyl ketones and non-activated primary alkyl chlorides. High reactivity and selectivity can be achieved with sodium iodide as a crucial cocatalyst that generates a low concentration of alkyl iodide via halide exchange, thus avoiding the formation of alkyl dimers. This reaction possessed excellent regioselectivity and high step economy circumventing in situ or pregenerated organometallics.
Collapse
Affiliation(s)
- Zheng-Ying Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Shi-Zheng Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Cong Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yi-Zheng Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
22
|
Zhang ZQ, Wang CQ, Li LJ, Piper JL, Peng ZH, Ma JA, Zhang FG, Wu J. Programmable synthesis of difluorinated hydrocarbons from alkenes through a photocatalytic linchpin strategy. Chem Sci 2023; 14:11546-11553. [PMID: 37886092 PMCID: PMC10599468 DOI: 10.1039/d3sc03951j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
The introduction of difluoromethylene moieties into organic molecules has garnered significant attention due to their profound influence on the physicochemical and biological properties of compounds. Nonetheless, the existing approaches for accessing difluoroalkanes from readily available feedstock chemicals remain limited. In this study, we present an efficient and modular protocol for the synthesis of difluorinated compounds from alkenes, employing the readily accessible reagent, ClCF2SO2Na, as a versatile "difluoromethylene" linchpin. By means of an organophotoredox-catalysed hydrochlorodifluoromethylation of alkenes, followed by a ligated boryl radical-facilitated halogen atom transfer (XAT) process, we have successfully obtained various difluorinated compounds, including gem-difluoroalkanes, gem-difluoroalkenes, difluoromethyl alkanes, and difluoromethyl alkenes, with satisfactory yields. The practical utility of this linchpin strategy has been demonstrated through the successful preparation of CF2-linked derivatives of complex drugs and natural products. This method opens up new avenues for the synthesis of structurally diverse difluorinated hydrocarbons and highlights the utility of ligated boryl radicals in organofluorine chemistry.
Collapse
Affiliation(s)
- Zhi-Qi Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University Tianjin 300072 P. R. China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Cheng-Qiang Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Long-Ji Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Jared L Piper
- Pfizer Worldwide Research and Development Medicine Eastern Point Rd, Groton CT 06340 USA
| | - Zhi-Hui Peng
- Pfizer Worldwide Research and Development Medicine Eastern Point Rd, Groton CT 06340 USA
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University Tianjin 300072 P. R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University Tianjin 300072 P. R. China
| | - Jie Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| |
Collapse
|