1
|
Nan B, Yu J, Li M, Huang C, Chen H, Zhang H, Chang C, Li J, Song X, Guo K, Arbiol J, Cabot A. Colloidal Ag 2SbBiSe 4 nanocrystals as n‑type thermoelectric materials. J Colloid Interface Sci 2025; 679:910-920. [PMID: 39406035 DOI: 10.1016/j.jcis.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Materials with low intrinsic thermal conductivity are essential for the development of high-performance thermoelectric devices. At the same time, the solution processing of these materials may enable the cost-effective production of the devices. Herein, we detail a high-yield and scalable colloidal synthesis route to produce Ag2SbBiSe4 nanocrystals (NCs) using amine-thiol-Se chemistry. The quaternary chalcogenide material is consolidated by a rapid hot-press maintaining the cubic crystalline structure. Transport measurements confirm that n-type Ag2SbBiSe4 exhibits an inherently ultralow lattice thermal conductivity of ca. 0.34 W m-1K-1 at 760 K. Moreover, a modulation doping strategy based on the blending of semiconductor Ag2SbBiSe4 and metallic Sn NCs is demonstrated to control the charge carrier concentration in the final composite material. The introduction of Sn nanodomains additionally blocks phonon propagation thus contributing to reducing the thermal conductivity of the final material. Ultimately, a peak thermoelectric figure of merit value of 0.64 at 760 K is achieved for n-type Ag2SbBiSe4-Sn nanocomposites that also demonstrate a notable Vickers hardness of 185 HV.
Collapse
Affiliation(s)
- Bingfei Nan
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain; Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain; Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
| | - Mengyao Li
- Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Huang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain; Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Hongyu Chen
- School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433 China
| | - Hao Zhang
- School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433 China
| | - Cheng Chang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Junshan Li
- Institute of Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xuan Song
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Guo
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona 08930, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Wang J, Yang L, Li Z, Chen C, Liao X, Guo P, Zhao XS. Morphology Variation of Ternary PdCuSn Nanocrystalline Assemblies and Their Electrocatalytic Oxidation of Alcohols. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47368-47377. [PMID: 39190921 DOI: 10.1021/acsami.4c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Metal alloys not only increase the composition and spatial distribution of elements but also provide the opportunity to adjust their physicochemical properties. Recently, multimetallic alloy nanocatalysts have attracted great attention in energy applications and the chemical industry. This work presents the production of three ternary PdCuSn nanocrystalline assemblies with similar compositions via a one-step hydrothermal method. The shape variation of assembly units from nanosheets and nanowires to nanoparticles were realized by adjusting the percentage of Sn in metal precursors. Experimental data show that PdCuSn nanowire networks showed the best catalytic activity by virtue of their optimized morphological characteristics and microscopic electronic structure. With electrooxidation of methanol, ethanol, ethylene glycol, and glycerol at 30 °C, PdCuSn nanowire networks demonstrated catalytic activity of 1129, 2111, 2540, and 1445 mA mg-1, respectively. The catalytic activity for alcohol oxidation is attributed to the production of the electronic structure and morphology features that are most suitable. This is achieved by introducing the proper quantities of Cu and Sn components in the first stage of synthesis. This study would help with the construction of high-efficiency nanostructured alloy catalysts by regulating the electronic structure and morphology.
Collapse
Affiliation(s)
- Jiasheng Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Likang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Chen Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xuejiang Liao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - X S Zhao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
3
|
Zhao W, Li M, Hu S. Insight into the ordering process and ethanol oxidation performance of Au-Pt-Cu ternary alloys. Dalton Trans 2024; 53:8750-8755. [PMID: 38712563 DOI: 10.1039/d4dt00553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Direct ethanol fuel cells (DEFCs), which have been widely recognized as nontoxic and green energy conversion devices, show attractive application prospects for liquid hydrogen-carriers, due to the higher specific energy and lower toxicity of ethanol. Pt-based catalysts are widely used in DEFCs, while their poor poisoning resistance highlights the importance of composition and structure optimization. Herein, we synthesized a series of reduced graphene oxide supported ternary alloy AuxPt1-xCu3/rGO (x = 0-1) catalysts with excellent ethanol oxidation performance and a composition-dependent volcano plot trend of the ordering degree was observed and rationalized. The highest Pt-normalized mass activity of Au0.8Pt0.2Cu3/rGO is attributed to the optimized CO binding energy according to DFT calculations. This work not only provides an efficient EOR catalyst based on ordered alloys AuxPt1-xCu3 (x = 0-1), but also offers valuable insight into the role of a third metal in tuning the structure and function of alloys.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Mengyao Li
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Shi Hu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Yang FK, Fang Y, Gong BT, Qu WL, Deng C, Wang ZB. Hollow cubic ternary PdCuB nanocage electrocatalysts with greatly enhanced catalytic performance for formic acid oxidation. Chem Commun (Camb) 2024; 60:710-713. [PMID: 38108242 DOI: 10.1039/d3cc05183h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The prepared PdCuB Ngs/C catalysts exhibited outstanding catalytic activity and stability in the formic acid oxidation reaction (FAOR). The improvement in electrocatalytic performance is due to the introduction of Cu and B atoms and the hollow nanocage structure, which changes the electronic structures of Pd, increases the reactive sites, and accelerates the reaction mass transfer rates.
Collapse
Affiliation(s)
- Fu-Kai Yang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Yue Fang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Bing-Tao Gong
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Wei-Li Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, China
| | - Chao Deng
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|