1
|
Gao C, Cai X, Huang J, Li Q, Kong H, Yao J, Wang Y, Li XL. 2D Chiral Ag(I) Complexes with A-π- A- and D-π- A-Type Dicarboxylic Acid Ligands: Presenting Significant Differences in Nonlinear Optical Responses. Inorg Chem 2025; 64:1541-1550. [PMID: 39792886 DOI: 10.1021/acs.inorgchem.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag4(LR)4(5-nipa)2]n (1), [Ag4(LS)4(5-nipa)2]n (2), and {[Ag4(LS)4(5-hipa)2]·2H2O}n (3) were prepared through the reactions of Ag2O with enantiopure bis-monodentate N-donors (LR/LS) and different dicarboxylic acids bearing A (acceptor)-π-A- and D (donor)-π-A-type structural features, where LR/LS = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-H2nipa = 5-nitroisophthalic acid, and 5-H2hipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral 1 and 2 enantiomeric pairs with the A-π-A-type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral 3 containing the D-π-A-type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of 3 is 451 × α-SiO2, being about 27 and 24 times larger than those of 1 and 2, respectively.
Collapse
Affiliation(s)
- Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xiaoyu Cai
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jinying Huang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Qianrong Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Huajie Kong
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jimei Yao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Yang Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
2
|
Kokina TE, Shekhovtsov NA, Tkachev AV, Agafontsev AM, Gourlaouen C, Bushuev MB. Palladium-Catalyzed C(sp 3)-H Activation in A Monoterpene-Based Compound Under Mild Conditions: A Combined Experimental and Theoretical Mechanistic Study. Chempluschem 2025; 90:e202400509. [PMID: 39269727 DOI: 10.1002/cplu.202400509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
A rare example of the palladium-catalyzed sp3 C-H bond activation in a monoterpene-based compound has been observed in the reaction of PdCl2 with a (+)-3-carene-based ligand HL (HL=N-((1aS,3S,7bR)-1,1,3-trimethyl-7-phenyl-5-(pyridin-2-yl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[f]quinolin-3-yl)acetamide), which yielded the [PdLCl] complex. In contrast to the vast majority of C(sp3)-H activation reactions which require prolonged heating and mixing due to the inert character of the corresponding bond, the reaction reported herein proceeds rapidly under mild conditions. A theoretical insight into the ligand deprotonation has been performed by DFT calculations. The mechanism of the C-H activation involves (i) simultaneous coordination of the CH3 group of HL to the Pd2+ ion and decoordination of the Cl- anion with consequent formation of a Cl⋅⋅⋅H-N hydrogen bond with the amide group, (ii) approximation of the out-of-sphere Cl- anion to one of the hydrogen atoms of the CH3 group mediated by the crane motion of the amide group and (iii) the ejection of the HCl molecule, which increases the entropy of the system and serves as a driving force for the reaction.
Collapse
Affiliation(s)
- Tatiana E Kokina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey V Tkachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexander M Agafontsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67070, Strasbourg Cedex, France
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Wu ZY, Yu MX, Zhang ZQ, Jiang JX, Liu T, Jiang FL, Chen L, Hong MC. 1D Cu(I)-based chiral organic-inorganic hybrid material with second harmonic generation and circular polarized luminescence. Dalton Trans 2024; 53:7315-7320. [PMID: 38590209 DOI: 10.1039/d4dt00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In recent years, organic-inorganic hybrid materials have demonstrated exceptional performance in nonlinear optics, attracting widespread attention. However, there are relatively few examples of coordination compounds synthesized with Cu as the metal center that exhibit excellent nonlinear optical properties. In this study, we successfully synthesized a pair of enantiomers named R/S-Cu2I2 by reacting chiral ligands with CuI. The crystal structure reveals a one-dimensional copper-iodide chain structure built by Cu2I2 clusters, and its ordered arrangement in space provides not only a strong second harmonic generation (SHG) signal (1.24 × KDP) but also a large birefringence (0.15@1064 nm). Under excitation at 395 nm, the crystals exhibit red fluorescence peaked at 675 nm. The CD spectra of R/S-Cu2I2 show a distinct mirror-symmetric Cotton effect, and their CPL signals are corresponding and opposite in the emission range, with a maximum glum of approximately ±2.5 × 10-3. Theoretical calculations using density functional theory were also carried out to enhance our understanding of the correlation between their structures and optical properties.
Collapse
Affiliation(s)
- Zhi-Yuan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
- Fuzhou University, Fuzhou, Fujian, 350002, China
| | - Mu-Xin Yu
- Organic Optoelectronics Engineering Research Center of Fujian's Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou, Fujian, 350108, China
| | - Zi-Qing Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| | - Jia-Xin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| | - Ting Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| | - Fei-Long Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| | - Lian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| | - Mao-Chun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, China.
| |
Collapse
|
4
|
Du X, Zhang Z, Gao C, Li F, Li XL. Two pairs of chiral Yb III enantiomers presenting distinct NIR luminescence and circularly polarized luminescence performances with giant differences in second-harmonic generation responses. Dalton Trans 2023; 52:17758-17766. [PMID: 37974451 DOI: 10.1039/d3dt03324d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
By introducing enantiomerically pure mono-bidentate N-donor ligands (LR/LS) into Yb(btfa)3(H2O)2 and Yb(dbm)3(H2O), respectively, two pairs of chiral YbIII enantiomers, namely Yb(btfa)3LR/Yb(btfa)3LS (D-1/L-1) and [Yb(dbm)3LR]·[Yb(dbm)3(C2H5OH)]/[Yb(dbm)3LS]·[Yb(dbm)3(C2H5OH)] (D-2/L-2) were isolated, where btfa- = 3-benzoyl-1,1,1-trifluoroacetonate, dbm- = dibenzoylmethanate, and LR/LS = (-)/(+)-4,5-pinenepyridyl-2-pyrazine. D-1/L-1 possess mononuclear structures in which the YbIII ions are eight-coordinated, while D-2/L-2 show cocrystal structures containing Yb(dbm)3(LR/LS) and Yb(dbm)3(C2H5OH) moieties in which the two YbIII ions are eight and seven-coordinated, respectively. They not only feature different molecular structures but also present distinct linear and nonlinear optical performances. Chiral mononuclear D-1 has better near infrared photo-luminescence (NIR-PL) and circularly polarized luminescence (CPL) performances than chiral cocrystal D-2. More remarkably, D-1/L-1 show large second-harmonic generation (SHG) responses (up to 1.25/1.28 × KDP) 18/16 times those of D-2/L-2 (0.07/0.08 × KDP). In addition, D-2/L-2 represent the first examples of lanthanide cocrystal complexes with NIR-PL, NIR-CPL and SHG properties.
Collapse
Affiliation(s)
- Xiaodi Du
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, PR China.
| | - Zhiqiang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China.
| |
Collapse
|