1
|
Yang X, Bielas R, Collière V, Salmon L, Bousseksou A. Various Sizes and Shapes of Mixed-Anion Fe(NH 2trz) 3(BF 4) 2-x(SiF 6) x/2@SiO 2 Nanohybrid Particles Undergoing Spin Crossover Just Above Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:90. [PMID: 39852705 PMCID: PMC11767441 DOI: 10.3390/nano15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Spin crossover (SCO) iron (II) coordination compounds in the form of nanohybrid SCO@SiO2 particles were prepared using a reverse micelles technique based on the TritonX-100/cyclohexane/water ternary system. Tetraethyl orthosilicate (TEOS) acts as precursor of both the SiF62- counter-anion and SiO2 to obtain Fe(NH2trz)3(BF4)2-x(SiF6)x/2@SiO2 nanoparticles with different sizes and morphologies while modifying the TEOS concentration and reaction time. The adjustable mixed-anion strategy leads to a range of quite scarce abrupt spin crossover behaviors with hysteresis just above room temperature (ca. 293 K), which is very promising for the integration of these materials into functional devices.
Collapse
Affiliation(s)
| | | | | | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France
| |
Collapse
|
2
|
Halcrow MA. Mix and match - controlling the functionality of spin-crossover materials through solid solutions and molecular alloys. Dalton Trans 2024; 53:13694-13708. [PMID: 39119634 DOI: 10.1039/d4dt01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The influence of dopant molecules on the structure and functionality of spin-crossover (SCO) materials is surveyed. Two aspects of the topic are well established. Firstly, isomorphous inert metal ion dopants in SCO lattices are a useful probe of the energetics of SCO processes. Secondly, molecular alloys of iron(II)/triazole coordination polymers containing mixtures of ligands were used to tune their spin-transitions towards room temperature. More recent examples of these and related materials are discussed that reveal new insights into these questions. Complexes which are not isomorphous can also be co-crystallised, either as solid solutions of the precursor molecules or as a random distribution of homo- and hetero-leptic centres in a molecular alloy. This could be a powerful method to manipulate SCO functionality. Published molecular alloys show different SCO behaviours, which may or may not include allosteric switching of their chemically distinct metal sites.
Collapse
Affiliation(s)
- Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Kulkarni O, Enriquez-Cabrera A, Yang X, Foncy J, Nicu L, Molnár G, Salmon L. Stereolithography 3D Printing of Stimuli-Responsive Spin Crossover@Polymer Nanocomposites with Optimized Actuating Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1243. [PMID: 39120348 PMCID: PMC11313888 DOI: 10.3390/nano14151243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
We used stereolithography to print polymer nanocomposite samples of stimuli-responsive spin crossover materials in the commercial photo-curable printing resins DS3000 and PEGDA-250. The thermomechanical analysis of the SLA-printed objects revealed not only the expected reinforcement of the polymer resins by the introduction of the stiffer SCO particles, but also a significant mechanical damping, as well as a sizeable linear strain around the spin transition temperatures. For the highest accessible loads (ca. 13-15 vol.%) we measured transformation strains in the range of 1.2-1.5%, giving rise to peaks in the coefficient of thermal expansion as high as 10-3 °C-1, which was exploited in 3D printed bilayer actuators to produce bending movement. The results pave the way for integrating these advanced stimuli-responsive composites into mechanical actuators and 4D printing applications.
Collapse
Affiliation(s)
- Onkar Kulkarni
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 205 Route de Narbonne, 31077 Toulouse, France
- Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 7 Avenue du Colonel Roche, 31400 Toulouse, France
| | - Alejandro Enriquez-Cabrera
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 205 Route de Narbonne, 31077 Toulouse, France
| | - Xinyu Yang
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 205 Route de Narbonne, 31077 Toulouse, France
| | - Julie Foncy
- Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 7 Avenue du Colonel Roche, 31400 Toulouse, France
| | - Liviu Nicu
- Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 7 Avenue du Colonel Roche, 31400 Toulouse, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 205 Route de Narbonne, 31077 Toulouse, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination (LCC), Centre National de la Recherche Scientifique (CNRS), University of Toulouse, 205 Route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
4
|
Yang X, Enriquez-Cabrera A, Jacob K, Coppel Y, Salmon L, Bousseksou A. Room temperature spin crossover properties in a series of mixed-anion Fe(NH 2trz) 3(BF 4) 2-x(SiF 6) x/2 complexes. Dalton Trans 2024; 53:6830-6838. [PMID: 38546485 PMCID: PMC11019404 DOI: 10.1039/d4dt00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
A series of mixed-anion Fe(NH2trz)3(BF4)2-x(SiF6)x/2 spin crossover complexes is obtained modifying the reaction time but also using an increase amount of tetraethyl orthosilicate as the source for the production and the incorporation of SiF62- competing with the BF42- anions present in the mother solution. The increase of the SiF62- anion inclusion to the detriment of the BF4- counterpart induces a shift of the temperature transition toward high temperatures leading to interesting bistability properties around room temperature with T1/2 spanning from 300 K to 325 K. Moreover, the implementation of a solid-liquid post synthetic modification approach from the Fe(NH2trz)3(BF4)2 parent complex with identical TEOS proportions and under certain experimental conditions lead systematically to the same Fe(NH2trz)3(BF4)1.2(SiF6)0.4 composition. This compound presents an abrupt spin crossover behaviour with a narrow hysteresis loop just above room temperature (320 K), which is stable under thermal cycling and along time with no specific storage conditions. Such crystalline powder sample incorporates homogeneous rod-shaped particles whose formation and physical properties can be followed simultaneously using infra-red spectroscopy, dynamic light scattering (DLS), transmission electronic microscopy (TEM) and optical reflectance. The observation of a stabilized single ca. 800 nm population of mixed-anion particles starting from insoluble various sizes (from nano- to microscale) Fe(NH2trz)3(BF4)2 particles supports the key role of the solvent (water molecules) on the separation, the reactivity and the reorganization of the 1D iron-triazole chains forming the packing of the structure.
Collapse
Affiliation(s)
- Xinyu Yang
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France.
| | | | - Kane Jacob
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France.
| | - Yannick Coppel
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France.
| | - Lionel Salmon
- LCC, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France.
| | | |
Collapse
|