1
|
Wu Y, Yao Y, Chen S, Li X, Wang Z, Wang J, Gao H, Chen H, Wang L, Sun H. Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:798-810. [PMID: 39723965 DOI: 10.1021/acs.est.4c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs). Thirty-four OPFRs were detected in river water samples, with total concentrations of 62.9-1.06 × 103 ng/L (median: 455 ng/L). Triphenylphosphine oxide and diphenyl phosphoric acid were ubiquitously detected up to 620 and 127 ng/L, respectively. Among 26 identified NOPs, 17 were reported for the first time in the environment, including 14 novel organophosphate esters (especially 4 heterocycles and 3 oligomers), 2 organophosphites, and an organophosphonate. Bis(2,4-di-tert-butylphenyl) hydrogen phosphate and 2,2-dimethylpropoxy(propyl)phosphinic acid with high predicted persistence or toxicity were widely detected, with semiquantified concentrations up to 990 and 1.0 × 103 ng/L, respectively. Structurally similar organophosphorus heterocycles exhibited consistent variation trends, suggesting a common emission source. Estimated annual river discharges to the sea were 20.6-37.0 kg/yr for OPFRs and 30.8-161 kg/yr for NOPs. These findings indicate that industrial activities contribute OPFRs and NOPs to the river catchment and its estuary, posing ecological risks to both terrestrial and marine environments.
Collapse
Affiliation(s)
- Yilin Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shijie Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huixian Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Karapetrova A, Cowger W, Michell A, Braun A, Bair E, Gray A, Gan J. Exploring microplastic distribution in Western North American snow. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136126. [PMID: 39423647 DOI: 10.1016/j.jhazmat.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Microplastic (MP) transport in the atmosphere, one of the least studied environmental compartments because of the relatively small size of air-borne MPs and the challenges in identifying them, may be inferred from their occurrence in snowfall. In this study, 11 sites across western coastal North America were sampled and analyzed for MP presence in fresh snowfall, months-old summer surface snow, and stratified deposits in snow pits. MPs were detected and characterized using a method integrating linear array µ-Fourier Transform Spectroscopy (µFTIR) and batch spectral analysis with open-source platform Open Specy. Recovery rate analysis from sample filtration to data analysis was conducted, and analysis of field or laboratory blanks suggested negligible contamination (≤ 1 polyamide fragment per blank). Concentrations of MPs in the fresh snowfall of remote sites and those proximal to sources were 5.1-150.8 p/L and 104.5-325 p/L of snowmelt water, respectively. Summer surface snow that was several months old had MP concentrations ranging from 57.5-539 p/L of meltwater, and snow sampled at different depths within a snowpack had concentrations ranging from 35-914 p/L. Our results demonstrate a streamlined method that may be used for measuring MPs in remote or pristine environments, contributing to a better understanding of long-range MP transport.
Collapse
Affiliation(s)
- Aleksandra Karapetrova
- Department of Environmental Science, University of California, Riverside, CA 92521, USA.
| | - Win Cowger
- Department of Environmental Science, University of California, Riverside, CA 92521, USA; Moore Institute for Plastic Pollution Research, Long Beach, CA 90803, USA
| | - Alex Michell
- Airborne Snow Observatories, Inc., Mammoth Lakes, CA 93546, USA
| | - Audrey Braun
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | | | - Andrew Gray
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Persaud D, Criscitiello AS, Spencer C, Lehnherr I, Muir DCG, De Silva AO, Young CJ. A 50 year record for perfluoroalkyl acids in the high arctic: implications for global and local transport. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1543-1555. [PMID: 39046203 DOI: 10.1039/d4em00219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent compounds that are ubiquitous globally, though some uncertainties remain in the understanding of their long-range transport mechanisms. They are frequently detected in remote locations, where local sources may be unimportant. We collected a 16.5 metre ice core on northern Ellesmere Island, Nunavut, Canada to investigate PFAA deposition trends and transport mechanisms. The dated core represents fifty years of deposition (1967-2016), which accounts for the longest deposition record of perfluoroalkylcarboxylic acids (PFCAs) in the Arctic and the longest record of perfluoroalkylsulfonic acids (PFSAs) globally. PFCAs were detected frequently after the 1990s and have been increasing since. Homologue pair correlations, molar concentration ratios, and model comparisons suggest that PFCAs are primarily formed through oxidation of volatile precursors. PFSAs showed no discernible trend, with concentrations at least an order of magnitude lower than PFCAs. We observed episodic deposition of some PFAAs, notably perfluorooctane sulfonic acid (PFOS) and perfluorobutane sulfonic acid (PFBS) before the 1990s, which may be linked to Arctic military activities. Tracer analysis suggests that marine aerosols and mineral dust are relevant as transport vectors for selected PFAAs during specific time periods. These observations highlight the complex mechanisms responsible for the transport and deposition of PFAAs in the High Arctic.
Collapse
Affiliation(s)
- Daniel Persaud
- Department of Chemistry, York University, Toronto, ON, Canada.
| | - Alison S Criscitiello
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christine Spencer
- Aquatic Contaminants Research Division, Environmental and Climate Change Canada, Burlington, Ontario, Canada.
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto-Mississauga, Mississauga, Ontario, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environmental and Climate Change Canada, Burlington, Ontario, Canada.
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environmental and Climate Change Canada, Burlington, Ontario, Canada.
| | - Cora J Young
- Department of Chemistry, York University, Toronto, ON, Canada.
| |
Collapse
|
4
|
St Louis VL, St Pierre KA, Emmerton CA, Serbu JA, Talbot CH, Szostek L, Lehnherr I, Muir DCG, Criscitiello A. Winter Dust Storms Impact the Physical and Biogeochemical Functioning of a Large High Arctic Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7415-7424. [PMID: 38578215 DOI: 10.1021/acs.est.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.
Collapse
Affiliation(s)
- Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Kyra A St Pierre
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Craig A Emmerton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jessica A Serbu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Charles H Talbot
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Lisa Szostek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Igor Lehnherr
- Department of Geography, Geomatics and Environment, University of Toronto-Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Alison Criscitiello
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|