1
|
González D, Espinosa S, Antiñolo M, Agúndez M, Cernicharo J, Willis S, Garrod RT, Jiménez E. Experimental Gas-Phase Removal of OH Radicals in the Presence of NH 2C(O)H over the 11.7-353 K Range: Implications in the Chemistry of the Interstellar Medium and the Earth's Atmosphere. ACS EARTH & SPACE CHEMISTRY 2024; 8:1970-1981. [PMID: 39440016 PMCID: PMC11492371 DOI: 10.1021/acsearthspacechem.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
Formamide (NH2C(O)H) has been observed both in the interstellar medium (ISM), being identified as a potential precursor of prebiotic molecules in space, and in the Earth's atmosphere. In these environments where temperature is very distinct, hydroxyl (OH) radicals may play an important role in the degradation of NH2C(O)H. Thus, in this work, we report for the first time the experimental study of the temperature dependence of the gas-phase removal of OH in the presence of NH2C(O)H over the 11.7-353 K range. In the lowest temperature range (11.7-177.5 K), of interest for the ISM chemistry, the kinetic study was performed using a pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus, while a thermostatized slow-flow reactor was employed in the kinetic study of the OH + NH2C(O)H reaction over the 273-353 K range, of interest in the Earth's troposphere below room temperature. The pulsed laser photolysis at 248 nm of a suitable OH-precursor (hydrogen peroxide, tert-butyl hydroperoxide, or acetylacetone) was used to generate OH radicals in the reactor. The temporal evolution of OH was monitored by laser-induced fluorescence at 310 nm. An almost independent k(T) between 273 and 353 K (temperatures of the Earth's troposphere extended to T > 298 K) is reported, being the OH + NH2C(O)H reaction the major degradation route with an atmospheric lifetime of around 1 day. At lower temperatures of interest in the ISM (11.7-177.5 K), the potential formation of NH2C(O)H dimers was evaluated. Thermodynamically, under equilibrium conditions, formamide would be fully converted into the dimer in that T range. However, the qualitative agreement of the observed increase of k(T) with computational studies on the OH + NH2C(O)H reaction down to 200 K let us to report, between 177.5 and 106.0 K, the following parameters commonly used in astrochemical modeling: α = (3.76 ± 0.62) × 10-12 cm3 s-1, β = (3.07 ± 0.11), and γ = 0. At 11.7 K, a kinetic model reproducing the experimental data indicates that formamide dimerization could be important, but the OH-reaction with the monomer would be fast, 4 × 10-10 cm3 s-1, and the OH-reaction with the dimer, relatively slow [(0.1-1.0) × 10-11 cm3 s-1]. Despite that, the impact of the gas-phase OH + NH2C(O)H in the relative abundances of NH2C(O)H in a dense molecular cloud (T ∼ 10 K) and after the warm-up phase in the surroundings of hot cores/corinos (here, 10-400 K) appears to be negligible.
Collapse
Affiliation(s)
- Daniel González
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - Sara Espinosa
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - María Antiñolo
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| | - Marcelino Agúndez
- Molecular
Astrophysics Group, Instituto de Física
Fundamental. Consejo Superior de Investigaciones Científicas
(IFF-CSIC), C/Serrano 123, 28006 Madrid, Spain
| | - José Cernicharo
- Molecular
Astrophysics Group, Instituto de Física
Fundamental. Consejo Superior de Investigaciones Científicas
(IFF-CSIC), C/Serrano 123, 28006 Madrid, Spain
| | - Sydney Willis
- Departments
of Chemistry and Astronomy, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Robin T. Garrod
- Departments
of Chemistry and Astronomy, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Elena Jiménez
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain
- Instituto
de Investigación en Combustión y Contaminación
Atmosférica, Universidad de Castilla-La
Mancha, Camino de Moledores
s/n, 13071 Ciudad
Real, Spain
| |
Collapse
|
2
|
Krasnokutski SA, Jäger C, Henning T, Geffroy C, Remaury QB, Poinot P. Formation of extraterrestrial peptides and their derivatives. SCIENCE ADVANCES 2024; 10:eadj7179. [PMID: 38630826 PMCID: PMC11023503 DOI: 10.1126/sciadv.adj7179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
The formation of protein precursors, due to the condensation of atomic carbon under the low-temperature conditions of the molecular phases of the interstellar medium, opens alternative pathways for the origin of life. We perform peptide synthesis under conditions prevailing in space and provide a comprehensive analytic characterization of its products. The application of 13C allowed us to confirm the suggested pathway of peptide formation that proceeds due to the polymerization of aminoketene molecules that are formed in the C + CO + NH3 reaction. Here, we address the question of how the efficiency of peptide production is modified by the presence of water molecules. We demonstrate that although water slightly reduces the efficiency of polymerization of aminoketene, it does not prevent the formation of peptides.
Collapse
Affiliation(s)
- Serge A. Krasnokutski
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena, Germany
| | - Cornelia Jäger
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena, Germany
| | | | - Claude Geffroy
- Institut de Chimie des Milieux et Materiaux de Poitiers, University of Poitiers, UMR CNRS 7285, France
| | - Quentin B. Remaury
- Institut de Chimie des Milieux et Materiaux de Poitiers, University of Poitiers, UMR CNRS 7285, France
| | - Pauline Poinot
- Institut de Chimie des Milieux et Materiaux de Poitiers, University of Poitiers, UMR CNRS 7285, France
| |
Collapse
|