1
|
Emiroglu DB, Singh A, Marco-Dufort B, Speck N, Rivano PG, Oakey JS, Nakatsuka N, deMello AJ, Labouesse C, Tibbitt MW. Granular Biomaterials as Bioactive Sponges for the Sequestration and Release of Signaling Molecules. Adv Healthc Mater 2024; 13:e2400800. [PMID: 38808536 DOI: 10.1002/adhm.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Indexed: 05/30/2024]
Abstract
A major challenge for the regeneration of chronic wounds is an underlying dysregulation of signaling molecules, including inflammatory cytokines and growth factors. To address this, it is proposed to use granular biomaterials composed of jammed microgels, to enable the rapid uptake and delivery of biomolecules, and provide a strategy to locally sequester and release biomolecules. Sequestration assays on model biomolecules of different sizes demonstrate that granular hydrogels exhibit faster transport than comparable bulk hydrogels due to enhanced surface area and decreased diffusion lengths. To demonstrate the potential of modular granular hydrogels to modulate local biomolecule concentrations, microgel scaffolds are engineered that can simultaneously sequester excess pro-inflammatory factors and release pro-healing factors. To target specific biomolecules, microgels are functionalized with affinity ligands that bind either to interleukin 6 (IL-6) or to vascular endothelial growth factor A (VEGF-A). Finally, disparate microgels are combined into a single granular biomaterial for simultaneous sequestration of IL-6 and release of VEGF-A. Overall, the potential of modular granular hydrogels is demonstrated to locally tailor the relative concentrations of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Apoorv Singh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Noël Speck
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Pier Giuseppe Rivano
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - John S Oakey
- Department of Chemical & Biological Engineering, University of Wyoming, 1000 E. University Ave, Laramie, WY, 82071, USA
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 37/39, Zurich, 8092, Switzerland
| | - Andrew J deMello
- deMello Laboratory, Department of Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg, 1-5/10, Zurich, 8093, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
2
|
Elli G, Ciocca M, Shkodra B, Petrelli M, Costa Angeli MA, Altana A, Carzino R, Fragouli D, Petti L, Lugli P. Electrolyte-Gated Carbon Nanotube Field-Effect Transistor-Based Sensors for Nanoplastics Detection in Seawater: A Study of the Interaction between Nanoplastics and Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38768-38779. [PMID: 38996179 DOI: 10.1021/acsami.4c07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Plastics accumulating in the environment are nowadays of great concern for aquatic systems and for the living organisms populating them. In this context, nanoplastics (NPs) are considered the major and most dangerous contaminants because of their small size and active surface, which allow them to interact with a variety of other molecules. Current methods used for the detection of NPs rely on bulky and expensive techniques such as spectroscopy. Here we propose, for the first time, a novel, fast, and easy-to-use sensor based on an electrolyte-gated field-effect transistor (EG-FET) with a carbon nanotube (CNT) semiconductor (EG-CNTFET) for the detection of NPs in aquatic environments, using polystyrene NPs (PS-NPs) as a model material. In particular, as a working mechanism for the EG-CNTFETs we exploited the ability of CNTs and PS to form noncovalent interactions. Indeed, in our EG-CNTFET devices, the interaction between NPs and CNTs caused a change in the electric double layers. A linear increase in the corrected on current (*ION) of the EG-CNTFETs, with a sensitivity of 9.68 μA/(1 mg/mL) and a linear range of detection from 0.025 to 0.25 mg/mL were observed. A π-π interaction was hypothesized to take place between the two materials, as indicated by an X-ray photoelectron spectroscopy analysis. Using artificial seawater as an electrolyte, to mimic a real-case scenario, a linear increase in *ION was also observed, with a sensitivity of 6.19 μA/(1 mg/mL), proving the possibility to use the developed sensor in more complex solutions, as well as in low concentrations. This study offers a starting point for future exploitation of electrochemical sensors for NP detection and identification.
Collapse
Affiliation(s)
- Giulia Elli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Manuela Ciocca
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Bajramshahe Shkodra
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Mattia Petrelli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Martina Aurora Costa Angeli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Antonio Altana
- Competence Center for Mountain Innovation Ecosystems, Piazzetta Franz Innerhofer 8, 39100 Bolzano, Italy
| | - Riccardo Carzino
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luisa Petti
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
| | - Paolo Lugli
- Sensing Technologies Laboratory, Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
- Competence Center for Mountain Innovation Ecosystems, Piazzetta Franz Innerhofer 8, 39100 Bolzano, Italy
| |
Collapse
|
3
|
Stuber A, Nakatsuka N. Aptamer Renaissance for Neurochemical Biosensing. ACS NANO 2024; 18:2552-2563. [PMID: 38236046 PMCID: PMC10832038 DOI: 10.1021/acsnano.3c09576] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Unraveling the complexities of brain function, which is crucial for advancing human health, remains a grand challenge. This endeavor demands precise monitoring of small molecules such as neurotransmitters, the chemical messengers in the brain. In this Perspective, we explore the potential of aptamers, selective synthetic bioreceptors integrated into electronic affinity platforms to address limitations in neurochemical biosensing. We emphasize the importance of characterizing aptamer thermodynamics and target binding to realize functional biosensors in biological systems. We focus on two label-free affinity platforms spanning the micro- to nanoscale: field-effect transistors and nanopores. Integration of well-characterized structure-switching aptamers overcame nonspecific binding, a challenge that has hindered the translation of biosensors from the lab to the clinic. In a transformative era driven by neuroscience breakthroughs, technological innovations, and multidisciplinary collaborations, an aptamer renaissance holds the potential to bridge technological gaps and reshape the landscape of diagnostics and neuroscience.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory for Biosensors
and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| | - Nako Nakatsuka
- Laboratory for Biosensors
and Bioelectronics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|