1
|
Ray B, Roy KK. Deciphering insights into the binding mechanism and plasticity of Telacebec with M. tuberculosis cytochrome bcc-aa3 supercomplex through an unbiased molecular dynamics simulation, free-energy analysis, and DFT study. J Biomol Struct Dyn 2025; 43:2968-2981. [PMID: 38111165 DOI: 10.1080/07391102.2023.2294833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
The cytochrome bcc-aa3 supercomplex, a key component in the electron transport chain pathway involved in bacterial energy production and homeostasis, is a clinically validated target for tuberculosis (TB), leading to Telacebec (Q203). Telacebec is a potent candidate drug under Phase II clinical development for the treatment of drug-sensitive and drug-resistant TB. Recently, the cryo-electron microscopy structure of this supercomplex from Mycobacterium tuberculosis (Mtb) complexed with Q203 was resolved at 6.9 Å resolution (PDB ID: 7E1W). To understand the binding site (QP site) flexibility and Q203's stability at the QP site of the Mtb cytochrome bcc complex, we conducted molecular dynamics (MD) simulation and free energy analysis on this complex in an explicit hydrated lipid bilayer environment for 500 ns. Through this study, the persistence of a range of direct and indirect interactions was observed over the course of the simulation. The significance of the interactions with His375, Tyr161, Ala178, Ala179, Ile183, His355, Leu356, and Thr313 is underlined. Electrostatic energy was the primary source of the net binding free energy, regardless of the important interacting residues. The overall binding free energy for Q203 was -112.84 ± 7.73 kcal/mol, of which the electrostatic and lipophilic energy contributions were -116.31 ± 1.14 and -21.32 ± 2.35 kcal/mol, respectively. Meanwhile, DFT calculations were utilized to elucidate Q203's molecular properties. Overall, this study deciphers key insights into the cytochrome bcc-aa3 supercomplex with Q203 on the ground of molecular mechanics and quantum mechanics that may facilitate structure-based drug design and optimization for the discovery of the next-generation antitubercular drug(s).
Collapse
Affiliation(s)
- Bedabrata Ray
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Gao J, Fu X, Yang K, Liu Z. Recent Advances in Visible Light-Induced C-H Functionalization of Imidazo[1,2-a]pyridines. Molecules 2025; 30:607. [PMID: 39942710 PMCID: PMC11820825 DOI: 10.3390/molecules30030607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The imidazo[1,2-a]pyridine skeleton is widely present in many natural products and pharmaceutical agents. Due to its impressive and significant biological activities, such as analgesic, anti-tumor, antiosteoporosis, and anxiolytic properties, the derivatization of imidazo[1,2-a]pyridine skeleton has attracted widespread attention from chemists. In recent years, significant progress has been made in the derivatization of imidazo[1,2-a]pyridines through direct C-H functionalization, especially through visible light induction. This review highlights recent advances in visible light-induced C-H functionalization of imidazo[1,2-a]pyridines during the past ten years, and some reaction mechanisms are also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhaowen Liu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.G.); (X.F.); (K.Y.)
| |
Collapse
|
3
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
4
|
Patel H, Nagani A, Patel M, Patel M, Yadav MR. Design, synthesis and biological evaluation of some imidazo[1,2- a]pyridine derivatives as anti-tubercular agents: an in silico - in vitro approach. J Biomol Struct Dyn 2024:1-18. [PMID: 39663643 DOI: 10.1080/07391102.2024.2436554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 12/13/2024]
Abstract
In this study, we designed, synthesized and evaluated some novel imidazo[1,2-a]pyridine derivatives as potential anti-TB agents. Preliminary in vitro screening for anti-TB activity of the synthesized compounds was performed against H37Rv strain using the microplate Alamar Blue assay (MABA). Network pharmacology was used to identify the possible targets and pathways of these compounds against Mtb infection. Molecular docking and molecular dynamics simulations were also performed to investigate the binding modes and stability of these compounds with the selected targets. The results showed that some of the synthesized compounds (6b, 6c, 6e, 6f, 6h, 6i, 6j, 6n and 6o) exhibited potent anti-TB activity, with minimum inhibitory concentrations (MICs) ranging from 1.6 to 6.25 μg/mL. The network pharmacology analysis revealed that among the 455 putative targets of imidazo[1,2-a]pyridine derivatives, 24 targets are the potential targets for treatment of Mtb infection. Among these 24 targets, 10 hub-targets were identified (TLR4, ICAM1, TLR9, STAT3, TNFRSF1A, ERBB2, CXCR3, ACE, IKBKG and NOS2) which were significantly involved in GO processes such as positive regulation of DNA-binding transcription factor activity, peptidyl-tyrosine phosphorylation, positive regulation of inflammatory response, mononuclear cell proliferation, regulation of hemopoiesis and cytokine production involved in inflammatory response and KEGG pathways such as pathways in Tuberculosis, NF-kappa B signalling, HIF-1 signalling PD-L1 expression, and PD-1 checkpoint pathway in cancer. Molecular docking and dynamics simulations confirmed the stable interactions of imidazo[1,2-a]pyridine derivatives with core target active sites, highlighting their potential as novel anti-TB drug candidates.
Collapse
Affiliation(s)
- Harnisha Patel
- Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Afzal Nagani
- Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Mirav Patel
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Mange Ram Yadav
- Research & Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
5
|
Bhawani, Sonam, Shinde VN, Swami PN, Rangan K, Kumar A. Propargyl alcohol as an acrolein equivalent: synthesis of β-(3-indolyl)acroleins and β-(imidazo[1,2- a]pyridin-3-yl)acroleins. Org Biomol Chem 2024; 22:8720-8723. [PMID: 39387363 DOI: 10.1039/d4ob01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A simple and straightforward method has been developed to access distinctly substituted β-(3-indolyl)acroleins and β-(imidazo[1,2-a]pyridin-3-yl)acroleins using propargyl alcohol as an acrolein equivalent. A broad substrate scope, good yields, easily accessible substrates, and metal-free conditions are the salient features of the developed methodology. This work contributes to a significant advancement in the sustainable synthesis of functionalized acroleins.
Collapse
Affiliation(s)
- Bhawani
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
6
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
7
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Bhosle AA, Banerjee M, Thakuri A, Vishwakarma PD, Chatterjee A. An ESIPT-active orange-emissive 2-(2'-hydroxyphenyl)imidazo[1,2- a]pyridine-derived chemodosimeter for turn-on detection of fluoride ions via desilylation. RSC Adv 2024; 14:33312-33322. [PMID: 39434992 PMCID: PMC11492827 DOI: 10.1039/d4ra05823b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Fluoride is an essential element for oral health with an optimum concentration of 0.7-1.2 ppm in drinking water, but it is detrimental at higher concentrations, causing fluorosis, acute gastric ulcer, urolithiasis, and kidney infection, which adds immense significance to its detection in water sources. In the current study, a new chemodosimeter (HIPS-Br) is designed by protecting a 2-(2'-hydroxyphenyl)imidazo[1,2-a]pyridine derivative (HIP-Br) with a fluoride recognizable tert-butyldiphenylsilane moiety and utilized for the selective detection of F- ions by an excited-state intramolecular proton transfer (ESIPT)-based fluorimetric response. The probe HIPS-Br exhibits blue fluorescence in solution, and upon the incremental addition of F- ions, it exhibits a turn-on response, exhibiting a strong orange emission at 598 nm by spontaneous cleavage of the tert-butyldiphenylsilane group to release fluorescent HIP-Br in the working solution. HIPS-Br displayed no or insignificant response towards numerous common anions, cations and small molecules, affirming its selectivity to F- ions and offered a low limit of detection (LOD) of 1.2 ppb (6.6 × 10-8 M). The real sample analysis by spiking fluorides in water and toothpaste samples showed excellent percent recoveries. The chemodosimeter was successfully utilized in the solid-phase detection of F- ions on silica-coated TLC plates and analyzed by ImageJ analysis, marking its utility in on-site quantitation purposes.
Collapse
Affiliation(s)
- Akhil A Bhosle
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Ankit Thakuri
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Pooja D Vishwakarma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, KK Birla Goa Campus Goa 403726 India +91-832-255-7031 +91-832-2580-347 +91-832-2580-320
| |
Collapse
|
9
|
Ren C, Chen S, Yuan Z, Fu R, Cui Y, Ma Z, Li W, Li X. Cobalt Nanoparticles Catalyzed N-Heterocycles Synthesis via Acceptorless Dehydrogenative Coupling. Chemistry 2024; 30:e202402168. [PMID: 39072825 DOI: 10.1002/chem.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
The acceptorless dehydrogenation reaction is a sustainable and atom-economical methodology in organic synthesis, resulting in the byproducts of only hydrogen or water. Herein, a robust Co-Si/CN catalyst (derived from ZIF@SiO2 composite) has been synthesized through a one-step assembly process via pyrolysis and etching. This catalyst has been employed for the acceptorless dehydrogenative coupling of 2-aminoalcohols with secondary alcohols, enabling efficient conversion of various substrates into desired quinoline or pyridine derivatives with a yield of up to 94 %.
Collapse
Affiliation(s)
- Changyue Ren
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shuiyan Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Rui Fu
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yanbin Cui
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhuang Ma
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Weizuo Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| |
Collapse
|
10
|
Yang K, Chen CB, Liu ZW, Li ZL, Zeng Y, Wang ZY. C 3-Alkylation of Imidazo[1,2-a]pyridines via Three-Component Aza-Friedel-Crafts Reaction Catalyzed by Y(OTf) 3. Molecules 2024; 29:3463. [PMID: 39124868 PMCID: PMC11313794 DOI: 10.3390/molecules29153463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
As an important class of nitrogen-containing fused heterocyclic compounds, imidazo[1,2-a]pyridines often exhibit significant biological activities, such as analgesic, anticancer, antiosteoporosis, anxiolytic, etc. Using Y(OTf)3 as a Lewis acid catalyst, a simple and efficient method has been developed for the synthesis of C3-alkylated imidazo[1,2-a]pyridines through the three-component aza-Friedel-Crafts reaction of imidazo[1,2-a]pyridines, aldehydes, and amines in the normal air atmosphere without the protection of inert gas and special requirements for anhydrous and anaerobic conditions. A series of imidazo[1,2-a]pyridine derivatives were obtained with moderate to good yields, and their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Furthermore, this conversion has the advantages of simple operation, excellent functional group tolerance, high atomic economy, broad substrate scope, and can achieve gram-level reactions. Notably, this methodology may be conveniently applied to the further design and rapid synthesis of potential biologically active imidazo[1,2-a]pyridines with multifunctional groups.
Collapse
Affiliation(s)
- Kai Yang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Cai-Bo Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Zhao-Wen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Zhen-Lin Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (C.-B.C.); (Z.-W.L.); (Z.-L.L.)
| | - Yu Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| |
Collapse
|
11
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
12
|
Balaso Mohite S, Kousin Mirza Y, Kumar V, Partap S, Baji Baba S, Alake J, Bera M, Karpoormath R. Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen. Chemistry 2024; 30:e202304239. [PMID: 38317443 DOI: 10.1002/chem.202304239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The advancement of sustainable chemistry and changes in the economy are strongly intertwined. Reaction time, cost savings, moderate temperatures, and generation of the fewest byproducts are frequently achieved by using catalytic processes. Herein, we report the C-H olefination of imidazo[1,2a] pyridine carboxamides with various acrylates in the presence of Pd (OAc)2 with O2 as the oxidant in aqueous ethanol rather than using non-ecofriendly solvents. The C-H activation features most user-friendly reaction conditions, excellent yield as well as plenty substrate scope and applicable for C-H deuteriation of the corresponding heteroarenes with D2O. Experimental mechanistic studies indicate that C-H activation step succeeded after formation of tetra coordinated square planer Pd-substrate adduct.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Shaik Baji Baba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| |
Collapse
|
13
|
Borsoi AF, Silva Ramos A, Sperotto N, Abbadi BL, Souza Macchi Hopf F, da Silva Dadda A, Scheibler Rambo R, Neves Muniz M, Delgado Paz J, Silveira Grams E, Fries da Silva F, Pissinate K, Galina L, Calle González L, Silva Duarte L, Alberton Perelló M, de Matos Czeczot A, Bizarro CV, Basso LA, Machado P. Exploring Scaffold Hopping for Novel 2-(Quinolin-4-yloxy)acetamides with Enhanced Antimycobacterial Activity. ACS Med Chem Lett 2024; 15:493-500. [PMID: 38628799 PMCID: PMC11017393 DOI: 10.1021/acsmedchemlett.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Utilizing a scaffold-hopping strategy from the drug candidate telacebec, a novel series of 2-(quinolin-4-yloxy)acetamides was synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (Mtb) growth. These compounds demonstrated potent activity against drug-sensitive and multidrug-resistant strains (MIC ≤ 0.02 μM). Leading compounds were evaluated against a known qcrB resistant strain (T313A), and their loss in activity suggested that the cytochrome bc1 complex is the likely target. Additionally, these structures showed high selectivity regarding mammalian cells (selectivity index > 500) and stability across different aqueous media. Furthermore, some of the synthesized quinolines demonstrated aqueous solubility values that exceeded those of telacebec, while maintaining low rates of metabolism. Finally, a selected compound prevented Mtb growth by more than 1.7 log10 colony forming units in a macrophage model of tuberculosis (TB) infection. These findings validate the proposed design and introduce new 2-(quinolin-4-yloxy)acetamides with potential for development in TB drug discovery campaigns.
Collapse
Affiliation(s)
- Ana Flávia Borsoi
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Medicina e Ciências
da Saúde, Pontifícia Universidade
Católica do Rio Grande do Sul, 90616-900 Porto Alegre, Rio
Grande do Sul, Brazil
| | - Alessandro Silva Ramos
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Nathalia Sperotto
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Bruno Lopes Abbadi
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Souza Macchi Hopf
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Adilio da Silva Dadda
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Raoní Scheibler Rambo
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Mauro Neves Muniz
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Josiane Delgado Paz
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Estevão Silveira Grams
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Fries da Silva
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Kenia Pissinate
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Luiza Galina
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Laura Calle González
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Lovaine Silva Duarte
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Marcia Alberton Perelló
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
| | - Alexia de Matos Czeczot
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano Valim Bizarro
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Augusto Basso
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Medicina e Ciências
da Saúde, Pontifícia Universidade
Católica do Rio Grande do Sul, 90616-900 Porto Alegre, Rio
Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Pablo Machado
- Instituto
Nacional de Ciência e Tecnologia em Tuberculose, Centro de
Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, 90616-900 Porto
Alegre, Rio Grande do Sul, Brazil
- Programa
de Pós-Graduação em Medicina e Ciências
da Saúde, Pontifícia Universidade
Católica do Rio Grande do Sul, 90616-900 Porto Alegre, Rio
Grande do Sul, Brazil
- Programa
de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do
Rio Grande do Sul, 90616-900 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Alkaltham MF, Almansour AI, Arumugam N, Vagolu SK, Tønjum T, Alaqeel SI, Rajaratnam S, Sivaramakrishnan V. Activity against Mycobacterium tuberculosis of a new class of spirooxindolopyrrolidine embedded chromanone hybrid heterocycles. RSC Adv 2024; 14:11604-11613. [PMID: 38605893 PMCID: PMC11008671 DOI: 10.1039/d4ra01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A new class of structurally intriguing heterocycles embedded with spiropyrrolidine, oxindole and chromanones was prepared by regio- and stereoselectively in quantitative yields using an intermolecular tandem cycloaddition protocol. The compounds synthesized were assayed for their anti-mycobacterial activity against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid-resistant (katG and inhA promoter mutations) clinical Mtb isolates. Four compounds exhibited significant antimycobacterial activity against Mtb strains tested. In particular, a compound possessing a fluorine substituted derivative displayed potent activity at 0.39 μg mL-1 against H37Rv, while it showed 0.09 μg mL-1 and 0.19 μg mL-1 activity against inhA promoter and katG mutation isolates, respectively. A molecular docking study was conducted with the potent compound, which showed results that were consistent with the in vitro experiments.
Collapse
Affiliation(s)
- Manal Fahad Alkaltham
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Siva Krishna Vagolu
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo N-0316 Oslo Norway
- Department of Microbiology, Oslo University Hospital N-0424 Oslo Norway
| | - Shatha Ibrahim Alaqeel
- Department of Chemistry, College of Science, King Saud University (034) Riyadh 11495 Saudi Arabia
| | - Saiswaroop Rajaratnam
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning Prasanthi Nilayam Anantapur Andhra Pradesh India
| |
Collapse
|
15
|
Shao A, Li Y, Ding Y, Li Y, Wu S, Jiang Y, Dong M, Wu H, Chen S. Photoredox-Cobaloxime Catalysis for Selective Oxidative Dehydrogenative [4+2] Annulation of Imidazo-Fused Heterocycles with Alkenes. Org Lett 2024; 26:2529-2534. [PMID: 38513218 DOI: 10.1021/acs.orglett.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A selective oxidative [4+2] annulation of alkenes with imidazo-fused heterocycles has been developed by using the synergistic combination of photoredox and cobaloxime catalysts. It allows facile access to various imidazole-fused polyaromatic scaffolds accompanied by H2 evolution. This protocol features high regioselectivity as well as a broad substrate scope. Detailed mechanistic studies indicate that twice the electron/H transfer processes facilitated by this catalytic system achieve the annulation π-extension of imidazo-fused heterocycles with alkenes.
Collapse
Affiliation(s)
- Ailong Shao
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuanyuan Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuxue Ding
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yahui Li
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shulian Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yuan Jiang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Min Dong
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Hai Wu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shuisheng Chen
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
16
|
Kamboj P, Tyagi V. Enzymatic Synthesis of Indole-Based Imidazopyridine using α-Amylase. Chembiochem 2024; 25:e202300824. [PMID: 38279707 DOI: 10.1002/cbic.202300824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 01/28/2024]
Abstract
The imidazo[1,2-a]pyridine scaffold has gained significant attention due to its presence as a lead structure in several commercially available pharmaceuticals like zolimidine, zolpidem, olprinone, soraprazan, etc. Further, indole-based imidazo[1,2-a]pyridine derivatives have been found interesting due to their anticancer and antibacterial activities. However, limited methods have been reported for the synthesis of indole-based imidazo[1,2-a]pyridines. In this study, we have successfully developed a biocatalytic process for synthesizing indole-based imidazo[1,2-a]pyridine derivatives using the α-amylase enzyme catalyzed Groebke-Blackburn-Bienayme (GBB) multicomponent reaction of 2-aminopyridine, indole-3-carboxaldehyde, and isocyanide. The generality and robustness of this protocol were shown by synthesizing differently substituted indole-based imidazo[1,2-a]pyridines in good isolated yields. Furthermore, to make α-amylase a reusable catalyst for GBB multicomponent reaction, it was immobilized onto magnetic metal-organic framework (MOF) materials [Fe3 O4 @MIL-100(Fe)] and found reusable up to four consecutive catalytic cycles without the significant loss in catalytic activity.
Collapse
Affiliation(s)
- Priya Kamboj
- School of Chemistry and Biochemistry, Thapar institute of engineering and technology (TIET), Patiala, Punjab, India, 147004
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar institute of engineering and technology (TIET), Patiala, Punjab, India, 147004
| |
Collapse
|
17
|
Shankar B, Kumar B, Kumar S, Arora A, Kavita, Tomar R, Singh BK. Efficient synthesis of glycosylated imidazo[1,2-a]pyridines via solvent catalysed Groebke-Blackburn-Bienayme reaction. Carbohydr Res 2023; 534:108974. [PMID: 37922684 DOI: 10.1016/j.carres.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
A solvent catalysed and metal catalyst-free Groebke-Blackburn-Bienayame three component reaction (GBB-3CR) has been developed for the synthesis of 2-(β-D-glycal-1-yl)-3-N-alkylamino-1-azaindolizines and 2-alkyl/aryl/heteroaryl-3-N-alkylamino-1-azaindolizines. The modified GBB reaction protocol is highly efficient, versatile, atom economic and has been performed in hexafluoroisopropanol (HFIP) without any added catalyst. The GBB-3CR showed high tolerance for a large no of substrates in term of aldehydes, differently substituted 2-aminopyridines and isocyanides without being affected by the presence of electron donating and electron withdrawing substituents at either aldehydes or 2-aminopyridines.
Collapse
Affiliation(s)
- Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi, 110019, India; Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Banty Kumar
- Department of Chemistry, Rajdhani College, University of Delhi, Delhi, 110015, India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kavita
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Rashmi Tomar
- Department of Chemistry, M.S.J. College, Bharatpur, Rajasthan, 321001, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
18
|
Mohite SB, Mane MV, Bera M, Karpoormath R. Palladium-Catalyzed Regiodivergent C-H Olefination of Imidazo[1,2a]pyridine Carboxamide and Unactivated Alkenes. Chemistry 2023:e202302759. [PMID: 37735937 DOI: 10.1002/chem.202302759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Despite remarkable successes in linear and branched vinyl (hetero) arene synthesis, regiodivergent C-H olefination with a single catalytic system has remained underdeveloped. Overcoming this limitation, a Pd/MPAA-catalyzed regiodivergent C-H olefination of imidazo[1,2a] pyridine carboxamides with unactivated terminal alkenes to generate branched and linear olefinated products depending upon the electronic nature of alkenes is reported herein. Moreover, this protocol can be applied for C-H deuteriation of the corresponding heteroarenes with D2 O as deuterium source. Preliminary experimental studies combined with computational investigations (DFT studies) suggest that regiodivergent olefination can be controlled by olefin insertion and β-hydride elimination steps.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| |
Collapse
|