1
|
Iraji A, Hariri R, Hashempur MH, Ghasemi M, Pourtaher H, Saeedi M, Akbarzadeh T. Design and synthesis of new 1,2,3-triazole-methoxyphenyl-1,3,4-oxadiazole derivatives: selective butyrylcholinesterase inhibitors against Alzheimer's disease. BMC Chem 2025; 19:97. [PMID: 40234998 PMCID: PMC11998406 DOI: 10.1186/s13065-025-01475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Alzheimer's disease (AD) remains a significant public health challenge due to its progressive cognitive impairment and the absence of proven treatments. In this study, several novel 1,2,3-triazole-methoxyphenyl-1,3,4-oxadiazole derivatives were synthesized and evaluated for their ability to inhibit key enzymes associated with AD: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Structure-activity relationship (SAR) analysis revealed that derivatives featuring electron-withdrawing groups, particularly nitro and fluorine substituents, exhibited remarkable inhibitory activity against BChE while showing minimal effectiveness against AChE. Among these, compound 13s (R = 4-CH3, R' = 4-NO2) demonstrated the highest potency, selectively targeting BChE with an IC50 value of 11.01 µM. Molecular docking and molecular dynamics (MD) simulations provided deeper insights into the favorable interactions between these compounds and BChE. Additionally, cytotoxicity studies confirmed the active compound's limited toxicity toward normal cells, indicating a promising therapeutic profile. These findings suggest that the synthesized selective anti-BChE compounds hold potential for consideration in the later stages of AD treatment.
Collapse
Affiliation(s)
- Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashem Hashempur
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshad Ghasemi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hormoz Pourtaher
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shokouhi Asl AS, Sayahi MH, Hashempur MH, Irajie C, Alaeddini AH, Ghafouri SN, Noori M, Dastyafteh N, Mottaghipisheh J, Asadi M, Larijani B, Mahdavi M, Iraji A. Cinnamic acid conjugated with triazole acetamides as anti-Alzheimer and anti-melanogenesis candidates: an in vitro and in silico study. Sci Rep 2025; 15:655. [PMID: 39754023 PMCID: PMC11698978 DOI: 10.1038/s41598-024-83020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including 1H-NMR, 13C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes. Among synthesize derivative compound 3-(4-((1-(2-((2,4-dichlorophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxyphenyl)acrylic acid (10j) exhibited the highest activity against BChE with an IC50 value of 11.99 ± 0.53 µM. Derivative 3-(3-methoxy-4-((1-(2-oxo-2-(p-tolylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (10d), bearing a 4-CH3 group, was identified as the most potent AChE inhibitor. In terms of tyrosinase inhibition, 3-(3-methoxy-4-((1-(2-((2-methyl-4-nitrophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (compound 10n), demonstrated 44.87% inhibition at a concentration of 40 µM. Additionally, a kinetic study of compound 10j which 2,4-dichlorophenyl substituents against BChE revealed a mixed-type inhibition pattern. Furthermore, molecular docking and molecular dynamic studies of compound 10j were conducted to thoroughly evaluate its mode of action within the BChE active site.
Collapse
Affiliation(s)
- Amir Shervin Shokouhi Asl
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 7050, SE-750 07, Uppsala, Sweden
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Sharma P, Sharma S, Yadav Y, Shukla P, Sagar R. Current pharmacophore based approaches for the development of new anti-Alzheimer's agents. Bioorg Med Chem 2024; 113:117926. [PMID: 39306973 DOI: 10.1016/j.bmc.2024.117926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
Amyloid beta peptide (Aβ) and hyperphosphorylated neuronal tau proteins accumulate in neurofibrillary tangles in Alzheimer's disease (AD), a chronic neurodegenerative illness. Chronic inflammation in the brain, which promotes disease progression, is another feature of the Alzheimer's disease pathogenesis. Approximately 60-70 % of dementia cases are caused by AD. The development of effective therapies for the treatment of AD is urgently needed given the severity of the condition and its rapidly rising prevalence. Cholinesterase inhibitors, beta-amyloid (A-beta), tau inhibitors, and many other medications are currently used as preventive medicine for AD. These medications can temporarily suppress dementia symptoms but cannot halt or reverse the disease's progression. Many international pharmaceutical companies have tried numerous times to develop an amyloid clearing medication based on the amyloid hypothesis, but without success. Therefore, the amyloid theory may not be entirely plausible. This review mainly covers the recent and important reported pharmacophores as the starting point to discuss already known targets like tau, butyrylcholinesterase, amyloid beta, and acetylcholinesterase and covers the literature between years 2019-2024.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paritosh Shukla
- Department of Chemistry, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Loori S, Pourtaher H, Mehranpour A, Hasaninejad A, Eftekharian M, Iraji A. Synthesis of novel aryl-substituted 2-aminopyridine derivatives by the cascade reaction of 1,1-enediamines with vinamidinium salts to develop novel anti-Alzheimer agents. Sci Rep 2024; 14:13780. [PMID: 38877034 PMCID: PMC11178820 DOI: 10.1038/s41598-024-64179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Alzheimer's disease (AD), a severe neurodegenerative disorder, imposes socioeconomic burdens and necessitates innovative therapeutic strategies. Current therapeutic interventions are limited and underscore the need for novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes implicated in the pathogenesis of AD. In this study, we report a novel synthetic strategy for the generation of 2-aminopyridine derivatives via a two-component reaction converging aryl vinamidinium salts with 1,1-enediamines (EDAMs) in a dimethyl sulfoxide (DMSO) solvent system, catalyzed by triethylamine (Et3N). The protocol introduces a rapid, efficient, and scalable synthetic pathway, achieving good to excellent yields while maintaining simplistic workup procedures. Seventeen derivatives were synthesized and subsequently screened for their inhibitory activity against AChE and BChE. The most potent derivative, 3m, exhibited an IC50 value of 34.81 ± 3.71 µM against AChE and 20.66 ± 1.01 µM against BChE compared to positive control donepezil with an IC50 value of 0.079 ± 0.05 µM against AChE and 10.6 ± 2.1 µM against BChE. Also, detailed kinetic studies were undertaken to elucidate their modes of enzymatic inhibition of the most potent compounds against both AChE and BChE. The promising compound was then subjected to molecular docking and dynamics simulations, revealing significant binding affinities and favorable interaction profiles against AChE and BChE. The in silico ADMET assessments further determined the drug-like properties of 3m, suggesting it as a promising candidate for further pre-clinical development.
Collapse
Affiliation(s)
- Sama Loori
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | - Hormoz Pourtaher
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | | | - Alireza Hasaninejad
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran
| | | | - Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Nazarian A, Abedinifar F, Hamedifar H, Hashempur MH, Mahdavi M, Sepehri N, Iraji A. Anticholinesterase activities of novel isoindolin-1,3-dione-based acetohydrazide derivatives: design, synthesis, biological evaluation, molecular dynamic study. BMC Chem 2024; 18:64. [PMID: 38561813 PMCID: PMC10985906 DOI: 10.1186/s13065-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
In pursuit of developing novel cholinesterase (ChE) inhibitors through molecular hybridization theory, a novel series of isoindolin-1,3-dione-based acetohydrazides (compounds 8a-h) was designed, synthesized, and evaluated as possible acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In vitro results revealed IC50 values ranging from 0.11 ± 0.05 to 0.86 ± 0.02 µM against AChE and 5.7 ± 0.2 to 30.2 ± 2.8 µM against BChE. A kinetic study was conducted on the most potent compound, 8a, to ascertain its mode of inhibition, revealing its competitive mode against AChE. Furthermore, the binding interaction modes of the most active compound within the AChE active site was elucidated. Molecular dynamics simulations of compound 8a were performed to assess the stability of the 8a-AChE complex. In silico pharmacokinetic predictions for the most potent compounds indicated their potential as promising lead structure for the development of new anti-Alzheimer's disease (anti-AD) agents.
Collapse
Affiliation(s)
- Ahmad Nazarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahime Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Sepehri
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- CinnaGen Research and Production Co., Alborz, Iran.
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|