1
|
Wang D, Zhao X, Zhou Y, Fang C, Zhou X, Deng J, Li L, Lei W, Su J, Huang Y. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. J Colloid Interface Sci 2025; 684:120-130. [PMID: 39787805 DOI: 10.1016/j.jcis.2024.12.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography. The rSer film serves as a platform for the encapsulation of fluorescent molecules, enabling fluorescent micropatterns applicable in anti-counterfeiting and encryption. In addition, the patterned rSer nanofilms support biocompatible cell proliferation. With their excellent chemical stability, high-resolution geometric patterns can be transferred onto silicon substrates through chemical etching, resulting in periodic chemical etching patterns that display structural colours. Inspired by the micro/nanostructures of lotus leaves, elliptical microstructures exhibit superhydrophobic behaviour, highlighting the versatility of the rSer film for applications in semiconductors, anti-counterfeiting, smart displays, and superhydrophobic coatings.
Collapse
Affiliation(s)
- Dong Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.
| | - Xiaoyong Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| | - Yajing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.
| | - Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| | - Jingjing Deng
- Department of Geriatric Dentistry, Peking University, School and Hospital of Stomatology, Zhongguancun South Street, Beijing 100081, PR China
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Wanqing Lei
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| | - Jian Su
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| | - Yingwei Huang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China
| |
Collapse
|
2
|
Liu W, Wang X, Chen Y. Fully Recycled Polyolefin Elastomer-Based Vitrimers with Ultra-High, Universal, Stable, and Switchable Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403934. [PMID: 38982940 DOI: 10.1002/smll.202403934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Achieving both robust adhesion to arbitrary surfaces and thermal-switchable/recyclable properties has proven challenging, particularly for commodity polyolefins. Herein, a simple and effective route is reported to transform polyolefins elastomer (POE) into a fully recycled epoxy-functionalized POE vitrimers (E-POE vit) with ultra-high, universal, stable, and switchable adhesion via facile free radical grafting and dynamic cross-linking. The resultant E-POE vit exhibits increase in adhesion strength on glass exceeding three to ten times compared to those commonly used polymers, due to the synergy of dense hydrogen (H)-bonds and strong interfacial affinity. In addition, E-POE vit also displays strong adhesion on diverse surfaces ranging from inorganic to organic while maintaining good stability in various harsh environments. More importantly, temperature-sensitive H-bonds allow E-POE vit to switch between attachment-detachment at alternating temperatures, resulting in reversible adhesion without adhesion loss, even after 10 cycles. Moreover, E-POE vit is able to be fully recycled and reused more than ten times via thermo-activated transesterification reactions with negligible change in structure and performance. This work may unlock strategies to fabricate high-performance commercial polymer-based adhesives with adhesion and recyclable features for intelligent and sustainable applications.
Collapse
Affiliation(s)
- Wei Liu
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Xinghuo Wang
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yukun Chen
- Lab of Advanced Elastomer, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
- Zhongshan Institute of Modern Industrial Technology, South China University of Technology, Zhongshan, 528437, China
| |
Collapse
|
3
|
Wang S, Ou R, Li J, Jin K, Yu L, Murto P, Wang Z, Xu X. Deformation-Resistant Underwater Adhesion in a Wide Salinity Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403350. [PMID: 38988140 DOI: 10.1002/smll.202403350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Conventional adhesives experience reduced adhesion when exposed to aqueous environments. The development of underwater adhesives capable of forming strong and durable bonds across various wet substrates is crucial in biomedical and engineering domains. Nonetheless, limited emphasis placed on retaining high adhesion strengths in different saline environments, addressing challenges such as elevated osmotic pressure and spontaneous dimensional alterations. Herein, a series of ionogel-based underwater adhesives are developed using a copolymerization approach that incorporates "dynamic complementary cross-linking" networks. Synergistic engineering of building blocks, cross-linking networks, pendant groups and counterions within ionogels ensures their adhesion and cohesion in brine spanning a wide salinity range. A high adhesion strength of ≈3.6 MPa is attained in freshwater. Gratifyingly, steady adhesion strengths exceeding 3.3 MPa are retained in hypersaline solutions with salinity ranging from 50 to 200 g kg-1, delivering one of the best-performing underwater adhesives suitable for diverse saline solutions. A combination of outstanding durability, reliability, deformation resistance, salt tolerance, and self-healing properties showcases the "self-contained" underwater adhesion. This study shines light on the facile fabrication of catechol-free ionogel-based adhesives, not merely boosting adhesion strengths in freshwater, but also broadening their applicability across various saline environments.
Collapse
Affiliation(s)
- Shuxue Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Richang Ou
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingjing Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kai Jin
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Xiaofeng Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
4
|
Yang M, Wang Y, Xu P, Yang J, Zhao Z, Liu Y. Facile Solvent-Free Fabrication of All-Small-Molecule Supramolecular Photothermal Bioadhesive for Sutureless Wound Closure. ACS Biomater Sci Eng 2024; 10:3935-3945. [PMID: 38741453 DOI: 10.1021/acsbiomaterials.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Achieving underwater adhesion possesses a significant challenge, primarily due to the presence of interfacial water, which restricts the potential applications of adhesives. In this study, we present a straightforward and environmentally friendly one-pot approach for synthesizing a solvent-free supramolecular TPFe bioadhesive composed of thioctic acid, proanthocyanidins, and FeCl3. The bioadhesive exhibits excellent biocompatibility and photothermal antibacterial properties and demonstrates effective adhesion on various substrates in both wet and dry environments. Importantly, the adhesive strength of this bioadhesive on steel exceeds 1.2 MPa and that on porcine skin exceeds 100 kPa, which is greater than the adhesive strength of most reported bioadhesives. In addition, the bioadhesive exhibits the ability to effectively halt bleeding, close wounds promptly, and promote wound healing in the rat skin wound model. Therefore, the TPFe bioadhesive has potential as a medical bioadhesive for halting bleeding quickly and promoting wound healing in the biomedical field. This study provides a new idea for the development of bioadhesives with firm wet adhesion.
Collapse
Affiliation(s)
- Mingrui Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| |
Collapse
|
5
|
Wei M, Zhou Q, Ma X, Gao B. Review of biomimetic ordered microstructures in advancing synergistic integration of adhesion and microfluidics. RSC Adv 2024; 14:11643-11658. [PMID: 38605897 PMCID: PMC11005026 DOI: 10.1039/d3ra07698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Many ordered arrangements are observable in the natural world, serving not only as pleasing aesthetics but also as functional improvements. These structured arrangements streamline cohesion while also facilitating the spontaneous drainage of liquids in microfluidics, resulting in effective separation and signal enhancement. Nevertheless, there is a substantial challenge when handling microstructured chips with microfluidic detection and adhesion. The arrangement of the adhesive interface's microstructure affects the liquid flow in the microfluidic chip, impacting the detection's sensitivity and accuracy. Additionally, the liquid in the microfluidic chip corrodes the adhesive material and structure, reducing the adhesion strength due to the hydration layer between the material and the contact interface. Therefore, this review explores the application of ordered structures in the integration of adhesion and microfluidics. We discussed the standard preparation method, appropriate materials, and the application of ordered structures in biomimetic adhesion and microfluidics. Furthermore, the paper discusses the major challenges in this field and provides opinions on its future developments.
Collapse
Affiliation(s)
- Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| | - Xiaoming Ma
- Department of Orthopedics, Taizhou People's Hospital 366 Taihu Road Taizhou Jiangsu Province People's Republic of China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
6
|
Guo X, Zhao X, Yuan L, Ming H, Li Z, Li J, Luo F, Tan H. Bioinspired Injectable Polyurethane Underwater Adhesive with Fast Bonding and Hemostatic Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308538. [PMID: 38350723 DOI: 10.1002/advs.202308538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Indexed: 02/15/2024]
Abstract
Underwater adhesives with injectable, organic solvent-free, strong, fast adhesion, and hemostatic properties have become an urgent need in biomedical field. Herein, a novel polyurethane underwater adhesive (PUWA) inspired by mussels is developed utilizing the rapid post-cure reaction of isocyanate esterification without organic solvents. The PUWA is created through the injectable two component curing process of component A (biocompatible polyurethane prepolymer) and component B (dopamine modified lysine derivatives: chain extender-LDA and crosslinker-L3DA). The two-component adhesive cures quickly and firmly underwater, with an impressive bonding strength of 40 kPa on pork skin and excellent burst pressure of 394 mmHg. Moreover, the PUWA exhibits robust adhesion strength in hostile environments with acid, alkali and saline solutions. Combined with excellent biocompatibility and hemostatic performance, the PUWA demonstrates effectively sealing wounds and promoting healing. With the ability to bond diverse substrates rapidly and strongly, the PUWA holds significant potential for application in both biomedical and industrial fields.
Collapse
Affiliation(s)
- Xiaolei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|