1
|
Zhao Y, Zhang J, Zhang J, Zhang Z, Liu R. Iodine-Catalyzed Cyclization of o-Nitrothiophenols with Cyclohexanones to Phenothiazines. J Org Chem 2024. [PMID: 38773694 DOI: 10.1021/acs.joc.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Here, a novel iodine-catalyzed direct cyclization of o-nitrothiophenols with cyclohexanones to phenothiazines has been described without external oxidants and hydrogen acceptors. The nitro of o-nitrothiophenol works as both a hydrogen acceptor and a coupling group, and water is the only byproduct. The reaction involves the reduction of nitro groups, C-H bond thioetherification, and C-H bond dehydroaromatization. This scheme offers broad synthetic value for further elaborations, as exemplified by a 3-step total synthesis of antipsychotic chlorpromazine.
Collapse
Affiliation(s)
- Yinglin Zhao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jin Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jingwu Zhang
- Shandong Medicine Technician College, Fengtian Road 999, Tai'an 271000, Shandong, P. R. China
| | - Zhida Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Renhua Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Ding H, Shi S, Hou Y, Cui W, Sun R, Lv Y, Yue H, Wei W, Yi D. Visible-Light-Promoted Cascade Coupling of 2-Isocyanonaphthalenes with Elemental Sulfur and Amines to Construct Naphtho[2,1-d]thiazol-2-Amines. Chemistry 2024; 30:e202400719. [PMID: 38462510 DOI: 10.1002/chem.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
A visible-light-induced strategy has been explored for the synthesis of naphtho[2,1-d]thiazol-2-amines through ortho-C-H sulfuration of 2-isocyanonaphthalenes with elemental sulfur and amines under external photocatalyst-free conditions. This three-component reaction, which utilizes elemental sulfur as the odorless sulfur source, molecular oxygen as the clean oxidant, and visible light as the clean energy source, provides a mild and efficient approach to construct a series of naphtho[2,1-d]thiazol-2-amines. Preliminary mechanistic studies indicated that visible-light-promoted photoexcitation of reaction intermediates consisting of thioureas and DBU might be involved in this transformation.
Collapse
Affiliation(s)
- Hongyu Ding
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Siyu Shi
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yanan Hou
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Wenxiu Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Rong Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Department School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P.R.China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, 810008, P.R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, P. R. China
| |
Collapse
|
3
|
Ando H, Takamura H, Kadota I, Tanaka K. Strongly reducing helical phenothiazines as recyclable organophotoredox catalysts. Chem Commun (Camb) 2024; 60:4765-4768. [PMID: 38529587 DOI: 10.1039/d4cc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Recyclable phenothiazine organophotoredox catalysts (PTHS 1-3, E1/2ox* = -2.34 to -2.40 V vs. SCE) have been developed. When the recycling performance was evaluated, PTHS-1 could be recovered at least four times without loss of its catalytic activity. These recyclable organophotoredox catalysts represent a promising tool for sustainable organic synthesis.
Collapse
Affiliation(s)
- Haru Ando
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| | - Kenta Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kitaku, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Gao Q, Guo Y, Cao P, Fan G, Xu Y. Regioselective synthesis of indazolo[2,3- a]quinazolines enabled by I 2/S-facilitated annulation relay dehydrogenative aromatization of cyclohexanones. Chem Commun (Camb) 2023; 59:13835-13838. [PMID: 37921123 DOI: 10.1039/d3cc04698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
A method for concise and efficient synthesis of indazolo[2,3-a]quinazolines has been developed via a sequential annulation of 3-aminoindazoles and dehydrogenative aromatization of cyclohexanones. This high regioselectivity is attributed to the fact that the Mannich reaction is superior to the aldol reaction in this system. It is worth mentioning that this convenient process is successfully extended to 3-aminopyrazoles for assembling another class of medicinally prevalent pyrazolo[1,5-a]quinazolines.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Key Laboratory of Biomedical Information Research, Henan International Joint Laboratory of Neural Information analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| |
Collapse
|
5
|
Fang F, Xia J, Quan S, Chen S, Deng GJ. Metal- and Solvent-Free Synthesis of Substituted Pyrimidines via an NH 4I-Promoted Three-Component Tandem Reaction. J Org Chem 2023; 88:14697-14707. [PMID: 37773063 DOI: 10.1021/acs.joc.3c01700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A facile and practical approach for the preparation of substituted pyrimidines from ketones, NH4OAc, and N,N-dimethylformamide dimethyl acetal has been described. This NH4I-promoted three-component tandem reaction affords a broad range of substituted pyrimidines in acceptable yields under metal- and solvent-free conditions. The present methodology features the advantages of simple and easily available starting materials, metal- and solvent-free conditions, a broad substrate scope with good functional group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, P. R. China
| | - Jie Xia
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Siying Quan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education Hunan Province, Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|