1
|
Pham DT, Ha PTM, Pham NB, Nguyen NY, Vo NT, Dang DK, Ra DS, Pham-Phan AM, Nguyen MQ, Thuy BTP. Silk-based microparticles for the adsorption of methylene blue: formulations, characterization, adsorption study, in silico molecular docking, and molecular dynamics simulation. RSC Adv 2025; 15:14042-14057. [PMID: 40309125 PMCID: PMC12042079 DOI: 10.1039/d5ra02266e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025] Open
Abstract
Although silk-derived biomaterials have garnered attention for environmental remediation due to their sustainability, biocompatibility, and biodegradability, the application of silk fibroin-based microparticles (FNP) for pollutant dye adsorption remains vastly underexplored. Hence, this study pioneers the fabrication and characterization of FNP for the removal of methylene blue (MB), offering a comprehensive comparison with two other silk-based states of raw silk cocoon pieces (SC) and sericin-degummed silk fibers (SD). Remarkably, FNP achieved an adsorption capacity of 122.98 mg g-1, over 32-fold higher than both SC and SD (3.8 mg g-1), highlighting its superior efficiency. The adsorption performance of FNP was strongly influenced by experimental variables including pH, contact time, initial dye concentration, and adsorbent dosage. Structurally, FNP exhibited favorable physicochemical properties for adsorption, including uniform spherical morphology (∼2.45 μm), moderate surface area (21.894 m2 g-1), a mesoporous-to-macroporous structure (pore diameter 21.911 Å), and a point of zero charge (pHpzc) of 6.7, contributing to its effective electrostatic interactions with the cationic dye MB. Importantly, the adsorption data fitted the Dubinin-Radushkevich isotherm, indicating a chemisorption-dominated mechanism. Molecular docking further revealed specific fibroin-dye interactions at Lys62 (hydrogen bonding, -0.2 kcal mol-1) and Glu94 (ionic bonding, -1.9 kcal mol-1). Additionally, molecular dynamics simulations in water confirmed the docking results and demonstrated the aqueous stability of the fibroin-MB complex. Conclusively, this work not only establishes FNP as a high-performance, eco-friendly adsorbent for MB removal, but also provides mechanistic insights at the molecular level, offering a scientific foundation for the rational design of protein-based adsorbents in future environmental technologies.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University Can Tho Vietnam
| | - Phuong T M Ha
- Department of Chemistry, Faculty of Pharmacy and Nursing, Tay Do University 68 Tran Chien Street Can Tho Vietnam
| | - Ngoc Bich Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University Can Tho Vietnam
| | - Ngoc Yen Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University Can Tho Vietnam
| | - Ngoc Thanh Vo
- Department of Health Sciences, College of Natural Sciences, Can Tho University Can Tho Vietnam
| | - Dang Khoa Dang
- Lac Hong University No. 10 Huynh Van Nghe Str., Buu Long Ward Bien Hoa Dong Nai Vietnam
| | - Danh Si Ra
- Dam Ca Mau Factory - Petrovietnam Camau Fertilizer Joint Stock Company (PVCFC) Ca Mau Vietnam
| | | | - Manh Quan Nguyen
- Department of Analytical Chemistry-Drug Quality Control, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy Can Tho Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Sciences, Van Lang University Ho Chi Minh City Vietnam
| |
Collapse
|
2
|
Yasmeen N, Chaudhary AA, Khan S, Ayyar PV, Lakhawat SS, Sharma PK, Kumar V. Antiangiogenic potential of phytochemicals from Clerodendrum inerme (L.) Gaertn investigated through in silico and quantum computational methods. Mol Divers 2025; 29:215-239. [PMID: 38678137 DOI: 10.1007/s11030-024-10846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
Suppressing vascular endothelial growth factor (VEGF), its receptor (VEGFR2), and the VEGF/VEGFR2 signaling cascade system to inhibit angiogenesis has emerged as a possible cancer therapeutic target. The present work was designed to discover and evaluate bioactive phytochemicals from the Clerodendrum inerme (L.) Gaertn plant for their anti-angiogenic potential. Molecular docking of twenty-one phytochemicals against the VEGFR-2 (PDB ID: 3VHE) protein was performed, followed by ADMET profiling and molecular docking simulations. These investigations unveiled two hit compounds, cirsimaritin (- 12.29 kcal/mol) and salvigenin (- 12.14 kcal/mol), with the highest binding energy values when compared to the reference drug, Sorafenib (- 15.14 kcal/mol). Furthermore, only nine phytochemicals (cirsimaritin and salvigenin included) obeyed Lipinski's rule of five and passed ADMET filters. Molecular dynamics simulations run over 100 ns revealed that the protein-ligand complexes remained stable with minimal backbone fluctuations. The binding free energy values of cirsimaritin (- 52.35 kcal/mol) and salvigenin (- 55.89 kcal/mol), deciphered by MM-GBSA analyses, further corroborated the docking interactions. The HOMO-LUMO band energy gap (ΔE) was calculated using density-functional theory (DFT) and substantiated using density of state (DOS) spectra. The chemical reactivity analyses revealed that salvigenin exhibited the highest chemical softness value (6.384 eV), the lowest hardness value (0.07831 eV), and the lowest ΔE value (0.1566 eV), which implies salvigenin was less stable and chemically more reactive than cirsimaritin and sorafenib. These findings provide further evidence that cirsimaritin and salvigenin have the ability to prevent angiogenesis and the development of cancer. Nevertheless, more in vitro and in vivo confirmation is necessary.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salauddin Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Priya Vijay Ayyar
- School of Life Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
3
|
Chagaleti BK, B SK, G V A, Rajagopal R, Alfarhan A, Arockiaraj J, Muthu Kumaradoss K, Karthick Raja Namasivayam S. Targeting cyclin-dependent kinase 2 CDK2: Insights from molecular docking and dynamics simulation - A systematic computational approach to discover novel cancer therapeutics. Comput Biol Chem 2024; 112:108134. [PMID: 38964206 DOI: 10.1016/j.compbiolchem.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Global public health is confronted with significant challenges due to the prevalence of cancer and the emergence of treatment resistance. This work focuses on the identification of cyclin-dependent kinase 2 (CDK2) through a systematic computational approach to discover novel cancer therapeutics. A ligand-based pharmacophore model was initially developed using a training set of seven potent CDK2 inhibitors. The obtained most robust model was characterized by three features: one donor (|Don|) and two acceptors (|Acc|). Screening this model against the ZINC database resulted in identifying 108 hits, which underwent further molecular docking studies. The docking results indicated binding affinity, with energy values ranging from -6.59 kcal mol⁻¹ to -7.40 kcal mol⁻¹ compared to the standard Roscovitine. The top 10 compounds (Z1-Z10) selected from the docking data were further screened for ADMET profiling, ensuring their compliance with pharmacokinetic and toxicological criteria. The top 3 compounds (Z1-Z3) chosen from the docking were subjected to Density Functional Theory (DFT) studies. They revealed significant variations in electronic properties, providing insights into the reactivity, stability, and polarity of these compounds. Molecular dynamics simulations confirmed the stability of the ligand-protein complexes, with acceptable RMSD and RMSF values. Specifically, compound Z1 demonstrated stability, around 2.4 Å, and maintained throughout the 100 ns simulation period with minimal conformational changes, stable RMSD, and consistent protein-ligand interactions.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Shantha Kumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Anjana G V
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box No. 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box No. 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
| | - Kathiravan Muthu Kumaradoss
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India.
| |
Collapse
|
4
|
Dash S, Rathi E, Kumar A, Chawla K, Kini SG. Identification of DprE1 inhibitors for tuberculosis through integrated in-silico approaches. Sci Rep 2024; 14:11315. [PMID: 38760437 PMCID: PMC11101490 DOI: 10.1038/s41598-024-61901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Decaprenylphosphoryl-β-D-ribose-2'-epimerase (DprE1), a crucial enzyme in the process of arabinogalactan and lipoarabinomannan biosynthesis, has become the target of choice for anti-TB drug discovery in the recent past. The current study aims to find the potential DprE1 inhibitors through in-silico approaches. Here, we built the pharmacophore and 3D-QSAR model using the reported 40 azaindole derivatives of DprE1 inhibitors. The best pharmacophore hypothesis (ADRRR_1) was employed for the virtual screening of the chEMBL database. To identify prospective hits, molecules with good phase scores (> 2.000) were further evaluated by molecular docking studies for their ability to bind to the DprE1 enzyme (PDB: 4KW5). Based on their binding affinities (< - 9.0 kcal/mole), the best hits were subjected to the calculation of free-binding energies (Prime/MM-GBSA), pharmacokinetic, and druglikeness evaluations. The top 10 hits retrieved from these results were selected to predict their inhibitory activities via the developed 3D-QSAR model with a regression coefficient (R2) value of 0.9608 and predictive coefficient (Q2) value of 0.7313. The induced fit docking (IFD) studies and in-silico prediction of anti-TB sensitivity for these top 10 hits were also implemented. Molecular dynamics simulations (MDS) were performed for the top 5 hit molecules for 200 ns to check the stability of the hits with DprE1. Based on their conformational stability throughout the 200 ns simulation, hit 2 (chEMBL_SDF:357100) was identified as the best hit against DprE1 with an accepted safety profile. The MD results were also in accordance with the docking score, MM-GBSA value, and 3D-QSAR predicted activity. The hit 2 molecule, (N-(3-((2-(((1r,4r)-4-(dimethylamino)cyclohexyl)amino)-9-isopropyl-9H-purin-6-yl)amino)phenyl)acrylamide) could serve as a lead for the discovery of a novel DprE1 inhibiting anti-TB drug.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Avinash Kumar
- Department of Medical Affairs, Curie Sciences Private Limited, Samastipur, Bihar, India, 848125
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
5
|
Akter S, Alhatlani BY, Abdallah EM, Saha S, Ferdous J, Hossain ME, Ali F, Kawsar SMA. Exploring Cinnamoyl-Substituted Mannopyranosides: Synthesis, Evaluation of Antimicrobial Properties, and Molecular Docking Studies Targeting H5N1 Influenza A Virus. Molecules 2023; 28:8001. [PMID: 38138491 PMCID: PMC10745968 DOI: 10.3390/molecules28248001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The pursuit of innovative combinations for the development of novel antimicrobial and antiviral medications has garnered worldwide interest among scientists in recent times. Monosaccharides and their glycosides, such as methyl α-d-mannopyranoside derivatives, play a significant role in the potential treatment of viral respiratory pathologies. This study was undertaken to investigate and assess the synthesis and spectral characterization of methyl α-d-mannopyranoside derivatives 2-6, incorporating various aliphatic and aromatic groups. The investigation encompassed comprehensive in vitro antimicrobial screening, examination of physicochemical properties, molecular docking analysis, molecular dynamics simulations, and pharmacokinetic predictions. A unimolar one-step cinnamoylation reaction was employed under controlled conditions to produce methyl 6-O-cinnamoyl-α-d-mannopyranoside 2, demonstrating selectivity at the C-6 position. This represented a pivotal step in the development of potential antimicrobial derivatives based on methyl α-d-mannopyranoside. Subsequently, four additional methyl 6-O-cinnamoyl-α-d-mannopyranoside derivatives were synthesized with reasonably high yields. The chemical structures of these novel analogs were confirmed through a thorough analysis of their physicochemical properties, elemental composition, and spectroscopic data. In vitro antimicrobial assays were conducted against six bacterial strains and two fungal strains, revealing promising antifungal properties of these methyl α-d-mannopyranoside derivatives in comparison to their antibacterial activity. Moreover, cytotoxicity testing revealed that the compounds are less toxic. Further supporting these findings, molecular docking studies were performed against the H5N1 influenza A virus, indicating significant binding affinities and nonbonding interactions with the target protein 6VMZ. Notably, compounds 4 (-7.2) and 6 (-7.0) exhibited the highest binding affinities. Additionally, a 100 ns molecular dynamics simulation was conducted to assess the stability of the complex formed between the receptor 6VMZ and methyl α-d-mannopyranoside derivatives under in silico physiological conditions. The results revealed a stable conformation and binding pattern within the stimulating environment. In silico pharmacokinetic and toxicity assessments of the synthesized molecules were performed using Osiris software (version 2.9.1). Compounds 4 and 6 demonstrated favorable computational and pharmacological activities, albeit with a low drug score, possibly attributed to their higher molecular weight and irritancy. In conclusion, this study showcases the synthesis and evaluation of methyl α-d-mannopyranoside derivatives as promising candidates for antimicrobial and antifungal agents. Molecular docking and dynamics simulations, along with pharmacological predictions, contribute to our understanding of their potential therapeutic utility, although further research may be warranted to address certain pharmacological aspects.
Collapse
Affiliation(s)
- Sabina Akter
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (S.A.); (J.F.)
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass 51921, Saudi Arabia;
| | - Supriyo Saha
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India;
| | - Jannatul Ferdous
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (S.A.); (J.F.)
| | - Md Emdad Hossain
- Wazed Miah Science Research Centre, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh; (S.A.); (J.F.)
| |
Collapse
|