1
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Aguilera-Rodriguez D, Ortega-Alarcon D, Vazquez-Calvo A, Ricci V, Abian O, Velazquez-Campoy A, Alcami A, Palomo JM. Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from Agaricus bisporus. RSC Med Chem 2024:d4md00289j. [PMID: 39371431 PMCID: PMC11451904 DOI: 10.1039/d4md00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from Agaricus bisporus (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein via the inhibition of SARS-CoV-2 3CLpro protease activity in vitro. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC50 of 2.5 μg ml-1 and IC90 of 5 μg ml-1, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.
Collapse
Affiliation(s)
| | - David Ortega-Alarcon
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
| | - Angela Vazquez-Calvo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Veronica Ricci
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| | - Olga Abian
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Adrian Velazquez-Campoy
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| |
Collapse
|
4
|
Siar EH, Abellanas-Perez P, Rocha-Martin J, Fernandez-Lafuente R. Support Enzyme Loading Influences the Effect of Aldehyde Dextran Modification on the Specificity of Immobilized Ficin for Large Proteins. Molecules 2024; 29:3674. [PMID: 39125078 PMCID: PMC11314007 DOI: 10.3390/molecules29153674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
It has been reported that the modification of immobilized glyoxyl-ficin with aldehyde dextran can promote steric hindrances that greatly reduce the activity of the immobilized protease against hemoglobin, while the protease still maintained a reasonable level of activity against casein. In this paper, we studied if this effect may be different depending on the amount of ficin loaded on the support. For this purpose, both the moderately loaded and the overloaded glyoxyl-ficin biocatalysts were prepared and modified with aldehyde dextran. While the moderately loaded biocatalyst had a significantly reduced activity, mainly against hemoglobin, the activity of the overloaded biocatalyst was almost maintained. This suggests that aldehyde dextran was able to modify areas of the moderately loaded enzyme that were not available when the enzyme was overloaded. This modification promoted a significant increase in biocatalyst stability for both biocatalysts, but the stability was higher for the overloaded biocatalyst (perhaps due to a combination of inter- and intramolecular crosslinking).
Collapse
Affiliation(s)
- El Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (E.H.S.); (P.A.-P.)
- Agri-Food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (E.H.S.); (P.A.-P.)
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | | |
Collapse
|
5
|
Lohachova KO, Kyrychenko A, Kalugin ON. Critical assessment of popular biomolecular force fields for molecular dynamics simulations of folding and enzymatic activity of main protease of coronavirus SARS-CoV-2. Biophys Chem 2024; 311:107258. [PMID: 38776839 DOI: 10.1016/j.bpc.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The main cysteine protease (Mpro) of coronavirus SARS-CoV-2 has become a promising target for computational development in anti-COVID-19 treatments. Here, we benchmarked the performance of six biomolecular molecular dynamics (MD) force fields (OPLS-AA, CHARMM27, CHARMM36, AMBER03, AMBER14SB and GROMOS G54A7) and three water models (TIP3P, TIP4P and SPC) for reproducing the native fold and the enzymatic activity of Mpro as monomeric and dimeric units. The MD sampling up to 1 μs suggested that the proper choice of the force fields and water models plays an essential role in reproducing the tertiary structure and the inter-residue distance between the catalytic dyad His41-Cys145. We found that while most benchmarked all-atom force fields reproduce well the native fold of Mpro, the CHARMM27/TIP3P and OPLS-AA/TIP4P setups revealed a good performance in reproducing the structure of the catalytic domain. In addition, these FF setups were also well-adopted for MD sampling of Mpro at the physiologic conditions by mimicking the presence of 100 mM NaCl and the elevated temperature of 310 K. Finally, both FFs were also performed well in reproducing the native fold of Mpro in a dimeric form. Therefore, comparing the preservation of the native fold of Mpro and the stability of its catalytic site architecture, our MD benchmarking suggests that the OPLS-AA/TIP4P and CHARMM27/TIP3P MD setups at the physiologic conditions may be well-suited for rapid in silico screening and developing broad-spectrum anti-coronaviral therapeutic agents.
Collapse
Affiliation(s)
- Kateryna O Lohachova
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine.
| | - Oleg N Kalugin
- School of Chemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
| |
Collapse
|
6
|
Khachatryan H, Matevosyan M, Harutyunyan V, Gevorgyan S, Shavina A, Tirosyan I, Gabrielyan Y, Ayvazyan M, Bozdaganyan M, Fakhar Z, Gharaghani S, Zakaryan H. Computational evaluation and benchmark study of 342 crystallographic holo-structures of SARS-CoV-2 Mpro enzyme. Sci Rep 2024; 14:14255. [PMID: 38902397 PMCID: PMC11189913 DOI: 10.1038/s41598-024-65228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
The coronavirus disease 19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global health crisis with millions of confirmed cases and related deaths. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication and presents an attractive target for drug development. Despite the approval of some drugs, the search for effective treatments continues. In this study, we systematically evaluated 342 holo-crystal structures of Mpro to identify optimal conformations for structure-based virtual screening (SBVS). Our analysis revealed limited structural flexibility among the structures. Three docking programs, AutoDock Vina, rDock, and Glide were employed to assess the efficiency of virtual screening, revealing diverse performances across selected Mpro structures. We found that the structures 5RHE, 7DDC, and 7DPU (PDB Ids) consistently displayed the lowest EF, AUC, and BEDROCK scores. Furthermore, these structures demonstrated the worst pose prediction results in all docking programs. Two structural differences contribute to variations in docking performance: the absence of the S1 subsite in 7DDC and 7DPU, and the presence of a subpocket in the S2 subsite of 7DDC, 7DPU, and 5RHE. These findings underscore the importance of selecting appropriate Mpro conformations for SBVS, providing valuable insights for advancing drug discovery efforts.
Collapse
Affiliation(s)
- Hamlet Khachatryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| | - Mher Matevosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Vardan Harutyunyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Smbat Gevorgyan
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Denovo Sciences Inc, 0060, Yerevan, Armenia
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Irina Tirosyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Yeva Gabrielyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | - Marusya Ayvazyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia
| | | | - Zeynab Fakhar
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hovakim Zakaryan
- Denovo Sciences Inc, 0060, Yerevan, Armenia.
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Hasratyan 7, 0014, Yerevan, Armenia.
| |
Collapse
|
7
|
Gayatri, Brewitz L, Ibbotson L, Salah E, Basak S, Choudhry H, Schofield CJ. Thiophene-fused γ-lactams inhibit the SARS-CoV-2 main protease via reversible covalent acylation. Chem Sci 2024; 15:7667-7678. [PMID: 38784729 PMCID: PMC11110133 DOI: 10.1039/d4sc01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Enzyme inhibitors working by O-acylation of nucleophilic serine residues are of immense medicinal importance, as exemplified by the β-lactam antibiotics. By contrast, inhibition of nucleophilic cysteine enzymes by S-acylation has not been widely exploited for medicinal applications. The SARS-CoV-2 main protease (Mpro) is a nucleophilic cysteine protease and a validated therapeutic target for COVID-19 treatment using small-molecule inhibitors. The clinically used Mpro inhibitors nirmatrelvir and simnotrelvir work via reversible covalent reaction of their electrophilic nitrile with the Mpro nucleophilic cysteine (Cys145). We report combined structure activity relationship and mass spectrometric studies revealing that appropriately functionalized γ-lactams can potently inhibit Mpro by reversible covalent reaction with Cys145 of Mpro. The results suggest that γ-lactams have potential as electrophilic warheads for development of covalently reacting small-molecule inhibitors of Mpro and, by implication, other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Gayatri
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lewis Ibbotson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Shyam Basak
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Hani Choudhry
- Department of Biochemistry, Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University Jeddah Saudi Arabia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|