1
|
Zhang F, Zhou J, Chen X, Zhao S, Zhao Y, Tang Y, Tian Z, Yang Q, Slavcheva E, Lin Y, Zhang Q. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:239. [PMID: 38334510 PMCID: PMC10856650 DOI: 10.3390/nano14030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The utilization of renewable energy for hydrogen production presents a promising pathway towards achieving carbon neutrality in energy consumption. Water electrolysis, utilizing pure water, has proven to be a robust technology for clean hydrogen production. Recently, seawater electrolysis has emerged as an attractive alternative due to the limitations of deep-sea regions imposed by the transmission capacity of long-distance undersea cables. However, seawater electrolysis faces several challenges, including the slow kinetics of the oxygen evolution reaction (OER), the competing chlorine evolution reaction (CER) processes, electrode degradation caused by chloride ions, and the formation of precipitates on the cathode. The electrode and catalyst materials are corroded by the Cl- under long-term operations. Numerous efforts have been made to address these issues arising from impurities in the seawater. This review focuses on recent progress in developing high-performance electrodes and electrolyser designs for efficient seawater electrolysis. Its aim is to provide a systematic and insightful introduction and discussion on seawater electrolysers and electrodes with the hope of promoting the utilization of offshore renewable energy sources through seawater electrolysis.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Junjie Zhou
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Chen
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Shengxiao Zhao
- Key Laboratory of Far-Shore Wind Power Technology of Zhejiang Province, Hangzhou 311122, China; (F.Z.); (X.C.); (S.Z.)
- Renewable Energy Engineering Institute, Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Yayun Zhao
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Yulong Tang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qianwan Institute of CNITECH, Ningbo 315201, China
| | - Evelina Slavcheva
- Institute of Electrochemistry and Energy Systems of Bulgaria Academic Science (IEES), Akad. G. Bonchev 10, 1113 Sofia, Bulgaria;
| | - Yichao Lin
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolysers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (Y.Z.); (Y.T.); (Z.T.); (Q.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|