1
|
Li G, Mao LL, Gao JN, Shi X, Huo ZY, Yang J, Zhou W, Li H, Yang HB, Tung CH, Wu LZ, Cong H. A Helical Tubular Dyad of [9]Cycloparaphenylene: Synthesis, Chiroptical Properties and Post-Functionalization. Angew Chem Int Ed Engl 2025; 64:e202419435. [PMID: 39582429 DOI: 10.1002/anie.202419435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The bottom-up synthesis of discrete tubular molecules that mimic the structural features of carbon nanotubes has been a long-standing pursuit for synthetic chemists. As the shortest segments of armchair-type carbon nanotubes, cycloparaphenylenes are regarded as ideal macrocyclic building blocks for achieving this goal. Here we report the synthesis of a helical tubular molecule featuring three diyne linkers between two site-specifically functionalized [9]cycloparaphenylenes. Its C3-symmetrical, radially conjugated structure and solid-state packing have been elucidated by spectroscopic and crystallographic characterizations. Notably, the resolved enantiomers display a circularly polarized luminescence brightness value of 1.47×103 M-1 cm-1, which is among the highest values for chiral organic molecules. Furthermore, the diyne-linked molecule could be directly converted into a thiophene-linked helical molecule, demonstrating the post-functionalization approach for the construction of chiral tubular molecules from cycloparaphenylenes.
Collapse
Affiliation(s)
- Gaolei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zi-Ye Huo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hongwei Li
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Zhang X, Lan K, Cheng C. Figure-Eight Bismacrocycles Derived from a Tetraphenylmethane Core and Oligoparaphenylene Loops. Org Lett 2024; 26:7853-7857. [PMID: 39240131 DOI: 10.1021/acs.orglett.4c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cycloparaphenylenes have garnered significant interest due to their distinctive chemical and physical characteristics. This study presents the synthesis and comprehensive characterization of two bis-macrocycle molecules joined by cycloparaphenylene and tetraphenylmethane moieties. Both molecules were thoroughly characterized using NMR, MALDI-TOF-HRMS, and X-ray diffraction. UV-vis spectroscopy revealed maximum absorption peaks at 325 and 328 nm, while the two bismacrocycles exhibit fluorescence emissions at 470 and 457 nm, consistent with DFT calculations. The computational analysis also disclosed the HOMO-LUMO gaps of 3.373 and 3.342 eV.
Collapse
Affiliation(s)
- Xiaobo Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kai Lan
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Zhou Q, Xu Z, Li K, Tian X, Ye L, Sun Z. Synthesis and Properties of a Strained Triple Nanohoop. Chem Asian J 2024; 19:e202301131. [PMID: 38721778 DOI: 10.1002/asia.202301131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Indexed: 07/13/2024]
Abstract
A strained triple nanohoop with a shared central benzene unit is synthesized using a threefold intramolecular ring-closing approach. Among the five possible constitutional isomers, the isomer with the highest D3h symmetry is isolated, the structure of which contains three nanohoop blades and a central hexaphenylbenzene unit. The structure is elucidated using NMR spectroscopy and mass spectrometry. The optical and electrochemical properties are investigated, revealing a moderate fluorescence quantum yield of 40 %. A water-soluble nanomaterial is prepared using a nanoparticle encapsulation method, and a fluorescence quantum yield of 10 % is retained, which demonstrates the potential of the nanomaterial in biological systems.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Zhuofan Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Ke Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Xiaoqi Tian
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Lei Ye
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Tsinghua University, Shenzhen, 518132, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| |
Collapse
|
4
|
Fan Y, He J, Guo S, Jiang H. Host-Guest Chemistry in Binary and Ternary Complexes Utilizing π-Conjugated Carbon Nanorings. Chempluschem 2024; 89:e202300536. [PMID: 38123532 DOI: 10.1002/cplu.202300536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
The carbon nanorings, possessing a radial π system, have garnered significant attention primarily due to their size-dependent photophysical properties and the presence of a unique curved π-conjugated cavity. This is evidenced by the rapid proliferation of publications. Furthermore, the integration of building blocks into CPP skeletons can confer [n]CPPs with novel and exceptional photophysical and electronic characteristics, as well as chiral properties and host-guest interactions, thereby augmenting the diversity of [n]CPPs. Notably, the curved π surface structures and concave cavity of carbon nanorings enable them to host aromatic or non-aromatic guests with a complementarily curved surface, resulting in interesting binary or ternary complexes. This review provides a comprehensive treatment of literature reports on binary and ternary complexes, focusing on both their host-guest interactions and properties. It is important to note that the scope of this review is limited to host-guest chemistry in binary and ternary complexes based on π-conjugated carbon nanorings.
Collapse
Affiliation(s)
- Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
5
|
Wang L, Liu B. Self-Assembled Ring-Based Complex Colloidal Particles by Lock-And-Key Interaction and Their Self-Assembly into Unusual Colloidal Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9205-9214. [PMID: 38629303 DOI: 10.1021/acs.langmuir.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Creating hierarchical crystalline materials using simple colloids or nanoparticles is very challenging, as it is usually impossible to achieve hierarchical structures without nonhierarchical colloidal interactions. Here, we present a hierarchical self-assembly (SA) route that employs colloidal rings and anisotropic colloidal particles to form complex colloids and uses them as building blocks to form unusual colloidal columnar liquid crystals or crystals. This route is realized by designing hierarchical SA driving forces that is controlled by the colloidal shape and shape-dependent depletion attraction. Depletion-induced lock-and-key interaction is the first driving force, which ensures a high efficiency (>90%) to load colloidal particles of other shapes such as spheres, spherocylinders, and oblate ellipsoids into rings, providing high-quality building blocks. Their SA into ordered superstructures has to require a second driving force such as higher volume fraction and/or stronger depletion attraction. As a result, unusual hierarchical colloidal (liquid) crystals, which have previously been difficult to fabricate by simple binary assembly, can be achieved. This work presents a significant advancement in the field of hierarchical SA, demonstrating a promising strategy for constructing many unprecedented crystalline materials by the SA route.
Collapse
Affiliation(s)
- Linna Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
6
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|