1
|
Wang YY, Li R, Cai Z, Weng S, Zhang B, Liao HT, Shahriar R, Himel MH, Shamsi E, Cronin SB. Investigating Surface p Ka and pH Using Surface-Enhanced Raman Scattering Spectroscopy with 4-Mercaptobenzoic Acid in Deionized Water and Sodium Bicarbonate Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17521-17529. [PMID: 39967234 DOI: 10.1021/acsami.4c21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Our research presents spectroscopic measurements of the surface pKa at electrode/electrolyte interfaces using surface-enhanced Raman scattering spectroscopy of 4-mercaptobenzoic acid (4-MBA). As the electrochemical potential is varied from negative to positive, the Raman intensity of the -COOH functional group (at 1700 cm-1) decreases while the -COO- Raman intensity (at 1410 cm-1) increases. The protonation-deprotonation of this surface-bound molecule reflects an electrochemically induced shift to more acidic conditions at negative potentials and more basic conditions at positive potentials. By fitting the data to a normalized sigmoid function, we obtain the percentage of surface protonation/deprotonation, which can be related to the surface pKa of the system. The percentage of surface protonation, which gives a proxy of the two-dimensional surface pKa, follows the Fermi-Dirac distribution as a function of the applied potential. The electrolyte-electrode pH-neutral conditions at the interface are extracted by the linear fitted intercepts of -log(COO-/COOH) as a function of the applied potential based on the Nernst equation, which are 0.25, 0.07, 0.08, and -0.46 V for DI water and 0.5 M sodium bicarbonate solutions with and without CO2 purging, respectively. The shift of surface neutral conditions toward more positive voltages in the electrolytes with CO2 purging indicates that the bulk solutions dissolved in the CO2-dissolved form become more acidic. The 25% reduction of protonation at negative applied potentials in CO2-purged DI water suggests that the direct reduction of hydronium ions and/or carbonic acid increases the surface pKa in the microenvironment. Adding alkali cations (Na+) attracts more proton donors toward the working electrode, resulting in the protonation capacity near the electrode surface, approximately -1.9 V-1, being double that of DI water, which is around -1 V-1. Hydrogen evolution reaction pathways are not detected in neutral or basic conditions due to the low concentration of hydronium ions (<10-6 M). The independence of the carbonic acid concentration with applied negative potentials, as measured by the surface pKa in the Helmholtz plane, indicates that changes in the local pH/surface pKa under neutral or basic bulk conditions are governed by the acid-base equilibrium of water, carbonic acid, bicarbonate, and carbonate ions.
Collapse
Affiliation(s)
- Yu Yun Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ruoxi Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Sizhe Weng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Han-Ting Liao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Rifat Shahriar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mehedi Hasan Himel
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ehsan Shamsi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Duan W, Li Y, Ou Y, Tuo H, Tian L, Zhu Y, Fu H, Zheng W, Feng C. Insights into Electrochemical Nitrate Reduction to Nitrogen on Metal Catalysts for Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3263-3275. [PMID: 39762146 DOI: 10.1021/acs.est.4c09975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) to harmless nitrogen (N2) presents a viable approach for purifying NO3--contaminated wastewater, yet most current electrocatalysts predominantly produce ammonium/ammonia (NH4+/NH3) due to challenges in facilitating N-N coupling. This study focuses on identifying metal catalysts that preferentially generate N2 and elucidating the mechanistic origins of their high selectivity. Our evaluation of 16 commercially available metals reveals that only Pb, Sn, and In demonstrated substantial N2 selectivity (79.3, 70.0, and 57.0%, respectively, under conditions of 6 h electrolysis, a current density of 10 mA/cm2, and an initial NO3--N concentration of 100 mg/L), while others largely favored NH4+ production. Comprehensive experimental and theoretical analyses indicate that NH4+-selective catalysts (e.g., Co) exhibited high water activity that enhances •H coverage, thereby promoting the hydrogenation of NO3- to NH4+ through the hydrogen atom transfer mechanism. In contrast, N2-selective catalysts, with their lower water activity, promoted the formation of N-containing intermediates, which likely undergo dimerization to form N2 via the proton-coupled electron transfer mechanism. Enhancing NO3- adsorption was beneficial to improve N2 selectivity by competitively reducing •H coverage. Our findings highlight the crucial role of water activity in NO3RR performance and offer a rational design of electrocatalysts with enhanced N2 selectivity.
Collapse
Affiliation(s)
- Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yipeng Ou
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haorui Tuo
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Li Tian
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yihui Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
4
|
Neves-Garcia T, Hasan M, Zhu Q, Li J, Jiang Z, Liang Y, Wang H, Rossi LM, Warburton RE, Baker LR. Integrated Carbon Dioxide Capture by Amines and Conversion to Methane on Single-Atom Nickel Catalysts. J Am Chem Soc 2024; 146:31633-31646. [PMID: 39503164 DOI: 10.1021/jacs.4c09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Direct electrochemical reduction of carbon dioxide (CO2) capture species, i.e., carbamate and (bi)carbonate, can be promising for CO2 capture and conversion from point-source, where the energetically demanding stripping step is bypassed. Here, we describe a class of atomically dispersed nickel (Ni) catalysts electrodeposited on various electrode surfaces that are shown to directly convert captured CO2 to methane (CH4). A detailed study employing X-ray photoelectron spectroscopy (XPS) and electron microscopy (EM) indicate that highly dispersed Ni atoms are uniquely active for converting capture species to CH4, and the activity of single-atom Ni is confirmed using control experiments with a molecularly defined Ni phthalocyanine catalyst supported on carbon nanotubes. Comparing the kinetics of various capture solutions obtained from hydroxide, ammonia, primary, secondary, and tertiary amines provide evidence that carbamate, rather than (bi)carbonate and/or dissolved CO2, is primarily responsible for CH4 production. This conclusion is supported by 13C nuclear magnetic resonance (NMR) spectroscopy of capture solutions as well as control experiments comparing reaction selectivity with and without CO2 purging. These findings are understood with the help of density functional theory (DFT) calculations showing that single-atom nickel (Ni) dispersed on gold (Au) is active for the direct reduction of carbamate, producing CH4 as the primary product. This is the first example of direct electrochemical conversion of carbamate to CH4, and the mechanism of this process provides new insight on the potential for integrated capture and conversion of CO2 directly to hydrocarbons.
Collapse
Affiliation(s)
- Tomaz Neves-Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Mahmudul Hasan
- Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zhan Jiang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yongye Liang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | | | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Liu W, Xia M, Zhao C, Chong B, Chen J, Li H, Ou H, Yang G. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nat Commun 2024; 15:3524. [PMID: 38664388 PMCID: PMC11045753 DOI: 10.1038/s41467-024-47765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
While electrochemical N2 reduction presents a sustainable approach to NH3 synthesis, addressing the emission- and energy-intensive limitations of the Haber-Bosch process, it grapples with challenges in N2 activation and competing with pronounced hydrogen evolution reaction. Here we present a tandem air-NOx-NOx--NH3 system that combines non-thermal plasma-enabled N2 oxidation with Ni(OH)x/Cu-catalyzed electrochemical NOx- reduction. It delivers a high NH3 yield rate of 3 mmol h-1 cm-2 and a corresponding Faradaic efficiency of 92% at -0.25 V versus reversible hydrogen electrode in batch experiments, outperforming previously reported ones. Furthermore, in a flow mode concurrently operating the non-thermal plasma and the NOx- electrolyzer, a stable NH3 yield rate of approximately 1.25 mmol h-1 cm-2 is sustained over 100 h using pure air as the intake. Mechanistic studies indicate that amorphous Ni(OH)x on Cu interacts with hydrated K+ in the double layer through noncovalent interactions and accelerates the activation of water, enriching adsorbed hydrogen species that can readily react with N-containing intermediates. In situ spectroscopies and density functional theory (DFT) results reveal that NOx- adsorption and their hydrogenation process are optimized over the Ni(OH)x/Cu surface. This work provides new insights into electricity-driven distributed NH3 production using natural air at ambient conditions.
Collapse
Grants
- This work was supported by the National Key R&D Program of China (2020YFA0710000, G.Y.), Joint Funds of the National Natural Science Foundation of China (U22A20391, G.Y.), National Natural Science Foundation of China (Grant Nos. 22108214, 22078256, G.Y.), Innovation Capability Support Program of Shaanxi (NO. 2023-CX-TD-26, G.Y.), and the Programme of Introducing Talents of Discipline to Universities (B23025, G.Y.)
Collapse
Affiliation(s)
- Wei Liu
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Mengyang Xia
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chao Zhao
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ben Chong
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiahe Chen
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - He Li
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Honghui Ou
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guidong Yang
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
6
|
Liu X, Koper MTM. Tuning the Interfacial Reaction Environment for CO 2 Electroreduction to CO in Mildly Acidic Media. J Am Chem Soc 2024; 146:5242-5251. [PMID: 38350099 PMCID: PMC10910518 DOI: 10.1021/jacs.3c11706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
A considerable carbon loss of CO2 electroreduction in neutral and alkaline media severely limits its industrial viability as a result of the homogeneous reaction of CO2 and OH- under interfacial alkalinity. Here, to mitigate homogeneous reactions, we conducted CO2 electroreduction in mildly acidic media. By modulating the interfacial reaction environment via multiple electrolyte effects, the parasitic hydrogen evolution reaction is suppressed, leading to a faradaic efficiency of over 80% for CO on the planar Au electrode. Using the rotating ring-disk electrode technique, the Au ring constitutes an in situ CO collector and pH sensor, enabling the recording of the Faradaic efficiency and monitoring of interfacial reaction environment while CO2 reduction takes place on the Au disk. The dominant branch of hydrogen evolution reaction switches from the proton reduction to the water reduction as the interfacial environment changes from acidic to alkaline. By comparison, CO2 reduction starts within the proton reduction region as the interfacial environment approaches near-neutral conditions. Thereafter, proton reduction decays, while CO2 reduction takes place, as the protons are increasingly consumed by the OH- electrogenerated from CO2 reduction. CO2 reduction reaches its maximum Faradaic efficiency just before water reduction initiates. Slowing the mass transport lowers the proton reduction current, while CO2 reduction is hardly influenced. In contrast, appropriate protic anion, e.g., HSO4- in our case, and weakly hydrated cations, e.g., K+, accelerate CO2 reduction, with the former providing extra proton flux but higher local pH, and the latter stabilizing the *CO2- intermediate.
Collapse
Affiliation(s)
- Xuan Liu
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|