1
|
Pokharel UR, Fronczek FR, Maverick AW. Structural Rearrangement in Cyclic Cu(II) Pyridyltriazole Complexes: Oxidation of Dabco to Oxalate and CO 2 Conversion to Carbonate. Molecules 2025; 30:1430. [PMID: 40286030 PMCID: PMC11990479 DOI: 10.3390/molecules30071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Structural rearrangements in metal-organic supramolecules constructed from the coordination of Cu(II) with m-xpt (m-xylylenebis(pyridyltriazole)) are investigated upon their interaction with 1,4-diazabicyclo[2.2.2]octane (dabco) and carbon dioxide-enriched air. The binuclear [Cu2(m-xpt)2]4+ complexes react with dabco to produce a carbonate-bridged trinuclear complex, [Cu3(m-xpt)3(µ-CO3)]4+, and an oxalate-bridged binuclear complex, [Cu2(m-xpt)2(µ-C2O4)]2+, where carbonate and oxalate likely originate from CO2 and dabco, respectively. The trinuclear complex reassembles the original dimer upon the removal of the carbonate ion. Similarly, polymeric [Cu(o-xpt)(PF6)]n, formed from Cu(I) and o-xpt (o-xylylenebis(pyridyltriazole)) coordination, undergoes oxidation in CO2-enriched air to yield a tetranuclear Cu(II) complex, Cu4(o-xpt)3(μ4-CO3)(μ2-OH)(μ2-OCOCH3)4+. The reaction progress is monitored by UV-Vis spectroscopy, and the major products are characterized by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Uttam R. Pokharel
- Department of Physical & Applied Science, University of Houston—Clear Lake, Houston, TX 77058, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Andrew W. Maverick
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
2
|
Andrews KG. Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages. Beilstein J Org Chem 2025; 21:421-443. [PMID: 40041197 PMCID: PMC11878132 DOI: 10.3762/bjoc.21.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
The bespoke environments in enzyme active sites can selectively accelerate chemical reactions by as much as 1019. Macromolecular and supramolecular chemists have been inspired to understand and mimic these accelerations and selectivities for applications in catalysis for sustainable synthesis. Over the past 60+ years, mimicry strategies have evolved with changing interests, understanding, and synthetic advances but, ubiquitously, research has focused on use of a molecular "cavity". The activities of different cavities vary with the subset of features available to a particular cavity type. Unsurprisingly, without synthetic access to mimics able to encompass more/all of the functional features of enzyme active sites, examples of cavity-catalyzed processes demonstrating enzyme-like rate accelerations remain rare. This perspective will briefly highlight some of the key advances in traditional cavity catalysis, by cavity type, in order to contextualize the recent development of robust organic cage catalysts, which can exploit stability, functionality, and reduced symmetry to enable promising catalytic modes.
Collapse
Affiliation(s)
- Keith G Andrews
- Department of Chemistry, Durham University, Lower Mount Joy, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
3
|
Esteve F, Schmitt JL, Kolodych S, Koniev O, Lehn JM. Selective Protein (Post-)modifications through Dynamic Covalent Chemistry: Self-activated S NAr Reactions. J Am Chem Soc 2025; 147:2049-2060. [PMID: 39746158 DOI: 10.1021/jacs.4c15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
SNAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species. This approach was further applied for the functionalization of two antibodies. In both cases, the presence of the aldehyde group in close proximity to the reactive C-F bond resulted in a noteworthy increase in bioconjugation yields, with excellent chemo-selectivity. Whereas the modification of an IgG1 antibody led to stochastic product distributions, microenvironment selectivity was noted when employing IgG4, in line with the lower number of Lys residues in the hinge region of the latter. Additionally, the postfunctionalization of the modified antibodies was attained through the dynamic covalent exchange of the tethered iminium derivative with hydrazides, representing an unprecedented "tag and modify" selective bioconjugation strategy based on DCvC.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| | - Jean-Louis Schmitt
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| | | | | | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
4
|
Yang Z, Esteve F, Antheaume C, Lehn JM. Triply Adaptive Libraries of Dynamic Covalent Macrocycles: Switching between Sorted and Unsorted States. J Am Chem Soc 2024; 146:15438-15445. [PMID: 38798165 DOI: 10.1021/jacs.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dynamic noncovalent and covalent chemistries have enabled the constitutional modulation of chemical entities within chemical dynamic systems. The switching between order and disorder, i.e., self-sorted and unsorted states of constitutional dynamic libraries, remains challenging. Herein, we study the adaptive behaviors of a dynamic library of imine macrocycles generated from dialdehydes and diamines, seeking ways to exert control over sorting and unsorting processes. The distribution of constituents in the present library of dynamic macrocycles is modulated in response to internal and external effectors (e.g., time, metal cations, and chemical fuels), resulting in the transient amplification of self-sorted constituents in out-of-equilibrium states. The present study showcases higher complexity in systems subject to multiple adaptation through the dynamic interconversion between singularity/order and diversity/disorder.
Collapse
Affiliation(s)
- Zhaozheng Yang
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Cyril Antheaume
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France
- Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Shang W, Wang Y, Zhu X, Liang T, Du C, Xiang J, Liu M. Helical Cage Rotors Switched on by Brake Molecule with Variable Fluorescence and Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:27639-27649. [PMID: 38054305 DOI: 10.1021/jacs.3c09461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
While chiral molecular rotors have unique frames and cavities to possibly generate switchable chiroptical functions, it still remains a formidable challenge to precisely restrict their rotations to activate certain functions such as fluorescence as well as circularly polarized luminescence (CPL), which are strongly related to the local molecular rotations. Herein, we design a pair of enantiopure helical cage rotors, which emit light neither at the molecular state nor in the crystal or aggregation states, although they contain luminophore groups. However, upon mounting with fluoroaromatic borane (TFPB) as a molecular brake, the phenyl rotation of the helical cage can be effectively hindered and fluorescence and CPL activities of the molecular cage are switched on. Crystal structure analysis reveals that the rotation is restricted through synergistic B-O-H-N bonding and a fluoroaromatic-aromatic (ArF-Ar) dipole interaction. Moreover, the helical cages are switched on stepwise with color-variable fluorescence and CPL by the inner brake in the molecular state and the outer brake in the supramolecular assemblies, respectively. This work not only provides the design idea of chiroptical molecular rotors but also unveils how fluorescence and CPL could be generated in cage rotor systems.
Collapse
Affiliation(s)
- Weili Shang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Tongling Liang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Junfeng Xiang
- BNLMS, Center for Physicochemical Analysis and Measurement, Institute of Chemistry, CAS, ZhongGuanCun North First Street 2, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing 100190, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|