1
|
Kong X, Gou MB, Li B, Luo ZQ, Su Y, Li Y, Yang C, Liu B, He Q, Li JF, Zhang J, Wang J, Tang L, Wang RH. Nickel-Catalyzed Rearranged Alkenylation of 2-Arylaziridines with Aryl Alkenes to Access Allylamines. Org Lett 2025; 27:2709-2714. [PMID: 40062692 DOI: 10.1021/acs.orglett.5c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The transition-metal-catalyzed ring-opening functionalization of aziridines presents a promising approach for synthesizing structurally complex amines. However, the rearranged functionalization of aziridines poses significant challenges. Herein, we report the first rearranged alkenylation of aziridines with aryl alkenes via Ni-Brønsted acid co-catalysis, leading to the rapid synthesis of a diverse array of allylamines with yields reaching up to 91%. Mechanistic studies suggest that the reaction occurs through the rearrangement of aziridine to generate an imine intermediate. This intermediate is subsequently captured by an alkene under nickel catalysis, ultimately leading to the formation of allylamines.
Collapse
Affiliation(s)
- Xiangkai Kong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Ming-Bai Gou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bo Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Zhen-Qi Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yu Su
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yi Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Chao Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bin Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Qing He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiang-Fei Li
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, 241002 Wuhu, P. R. China
| | - Jiquan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Lei Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Rong-Hua Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, 561113 Guiyang, P. R. China
| |
Collapse
|
2
|
Li PT, Mou Q, Yu W. Regioselective 1,4-Hydroamination of 1,3-Dienes by Photoredox/Cobalt Dual Catalysis. Org Lett 2025; 27:1973-1978. [PMID: 39951708 DOI: 10.1021/acs.orglett.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Herein, we report a visible-light-driven and cobalt-mediated 1,4-hydroamination reaction of 1,3-dienes with arylmines as the nucleophiles. The reaction involves regioselective addition of [CoIII]-H to 1,3-diene, followed by oxidation and nucleophilic substitution by amines. Using Ir(ppy)3 as the photocatalyst enables the cobalt redox cycle to be implemented without using an external oxidant and hydride regent. This protocol can be applied as well to forge the carbon-oxygen and carbon-sulfur bonds in an analogous way.
Collapse
Affiliation(s)
- Pei-Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| |
Collapse
|
3
|
Wang RH, Li B, Gou MB, Luo ZQ, Liu B, Li Y, Kong X, He Q, He S, Li JF, Huang J, Wang J, Zhang J, Tang L. Redox-Neutral Coupling of Allyl Alcohols with Trifluoromethyl Ketones via Synergistic Ni-Ti Bimetallic Catalysis. Org Lett 2024; 26:7408-7413. [PMID: 39186015 DOI: 10.1021/acs.orglett.4c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A redox-neutral coupling of allyl alcohols with trifluoromethyl ketones has been developed via Ni-Ti bimetallic catalysis. This innovative method allows for the efficient synthesis of various β-tertiary trifluoromethyl alcohol-substituted ketones with yields of up to 98%. The reaction is scalable and compatible with a wide range of substrates, including complex bioactive molecules. Mechanistic studies suggest that the rate-determining step involving β-H elimination and the presence of the Ti-based Lewis acid, as well as a hydroxyl group on the substrates, is crucial for driving the reactivity of this transformation.
Collapse
Affiliation(s)
- Rong-Hua Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, 550014 Guiyang, P. R. China
| | - Bo Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Ming-Bai Gou
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Zhen-Qi Luo
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Bin Liu
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Yong Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Xiangkai Kong
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Qing He
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Siyu He
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiang-Fei Li
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, 241002 Wuhu, P. R. China
| | - Jiayu Huang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jianta Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Jiquan Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 561113 Guiyang, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, 550014 Guiyang, P. R. China
| |
Collapse
|
4
|
Patra S, Nandi M, Maurya MR, Sahu G, Mohapatra D, Reuter H, Dinda R. Ni-Unsymmetrical Salen Complex-Catalyzed One-Pot Multicomponent Reactions for Efficient Synthesis of Biologically Active 2-Amino-3-cyano-4 H-pyrans. ACS OMEGA 2024; 9:31910-31924. [PMID: 39072099 PMCID: PMC11270558 DOI: 10.1021/acsomega.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
In this report, four new Ni(II)-unsymmetrical salen complexes, [NiL1-4], were prepared by refluxing Ni(Ac)2·4H2O with unsymmetrical salen ligands, H2L1-4. All of the synthesized ligands and complexes were characterized by various physicochemical methods. Also, the solid-state structures of [NiL1], [NiL2], and [NiL4] were defined through single-crystal X-ray diffraction methods. The catalytic potential of [NiL1-4] was investigated by economic and environmentally friendly one-pot-three-component reactions (using reagent: 1,3-dicarbonyls, malononitrile, benzaldehyde, or its derivatives) for the synthesis of biologically active 2-amino-3-cyano-4H-pyran derivatives (total 16 derivatives). After optimization of the reaction conditions, this new synthetic protocol by taking Ni(II)-unsymmetrical salen complexes as catalysts shows excellent conversion with a maximum yield of up to 98% of the effective catalytic products within 1 h of reaction time. In addition, it was observed that the aromatic aldehyde containing an electron-withdrawing group as a ring substituent shows better conversion (up to 98%), and the electron-donating group substituent shows similar or less conversion compared to benzaldehyde under the optimized reaction conditions. From the comparison of results between all these Ni complexes, it was found that the efficiency of the catalytic performance follows the order [NiL1] > [NiL3] > [NiL2] > [NiL4]. A possible reaction pathway was predicted and established through UV-vis spectroscopy. Intermediate II proposed in the reaction pathway was also trapped and characterized through 1H and 13C NMR.
Collapse
Affiliation(s)
| | - Monojit Nandi
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Mannar R. Maurya
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Gurunath Sahu
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Deepika Mohapatra
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Hans Reuter
- Institute
of Chemistry of New Materials, University
of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Rupam Dinda
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
5
|
Zhang T, Jiang S, Qian MY, Zhou QL, Xiao LJ. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydroaminoalkylation of Unactivated Alkenes. J Am Chem Soc 2024; 146:3458-3470. [PMID: 38270100 DOI: 10.1021/jacs.3c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.
Collapse
Affiliation(s)
- Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Shan Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Meng-Ying Qian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Wang RH, Zhang Z, Li B, Zhu GF, Shi J, Tang L. p-Cresol-Enabled Nickel-Catalyzed Intermolecular Redox-Economical Coupling of Allyl Alcohols with Alkynes through oxa-Nickelacycle. Org Lett 2023; 25:8463-8468. [PMID: 37982592 DOI: 10.1021/acs.orglett.3c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An intermolecular redox-economical coupling reaction of allyl alcohols with alkynes, catalyzed by Ni-Brønsted acid cocatalysis, has been developed. This method allows for the synthesis of a diverse range of γ,δ-unsaturated ketones with yields ranging from 40% to 94%, while maintaining excellent compatibility with various functional groups. The transformation of the resulting product demonstrates the significant practical value of this method. Further mechanistic investigations have revealed that the reaction proceeds through the formation of an oxa-nickelacycle intermediate.
Collapse
Affiliation(s)
- Rong-Hua Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Zhou Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bo Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Gao-Feng Zhu
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Jing Shi
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|