1
|
Li HH, Liu Y, Kramer S. Benzylic C(sp 3)-H Phosphonylation via Dual Photo and Copper Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420613. [PMID: 39579061 DOI: 10.1002/anie.202420613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Alkyl phosphonates are important motifs in medicinal chemistry, yet their efficient synthesis by direct C(sp3)-H functionalization remains a challenge. Here, we report straightforward access to benzylic phosphonates by direct C(sp3)-H functionalization in a cross-dehydrogenative-coupling reaction between non-specialized alkylarenes and unfunctionalized phosphites. Notably, the C-H substrates are used as the limiting reagents. The scope of benzylic C-H substrates is broad, and the mild reaction conditions allow for good functional group tolerance. Mechanistic studies indicate that the reaction proceeds via a radical pathway rather than the cationic pathway followed for specialized benzylic C-H substrates in previous methods.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Yuwen Liu
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
2
|
Yang F, Chi L, Ye Z, Gong L. Photoinduced Regiodivergent and Enantioselective Cross-Coupling of Glycine Derivatives with Hydrocarbon Feedstocks. J Am Chem Soc 2025; 147:1767-1780. [PMID: 39746931 DOI: 10.1021/jacs.4c13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Regiodivergent asymmetric synthesis represents a transformative strategy for the efficient generation of structurally diverse chiral products from a single set of starting materials, significantly enriching their enantiomeric composition. However, the design of radical-mediated regiodivergent and enantioselective reactions that can accommodate a wide range of functional groups and substrates has posed significant challenges. The obstacles primarily lie in switching the regioselectivity and achieving high enantiodiscrimination, especially when dealing with high-energy intermediates. To address these issues, we have developed a new catalytic system that integrates photoinduced hydrogen atom transfer (HAT) and chiral copper catalysis, involving the fine-tuning of chiral ligands, additives, and other reaction parameters. The strategy facilitates regiodivergent and enantioselective cross-couplings between N-aryl glycine ester/amide derivatives and abundant hydrocarbon feedstocks through strong C(sp3)-H bond activation. This approach allows for the controlled and stereoselective formation of C(sp3)-C(sp3) and C(sp3)-N bonds, yielding a rich variety of C- or N-alkylated glycine esters and amides with commendable yields (up to 92% yield), exclusive regioselectivities (typically >20:1 rr), and high enantioselectivities (up to 96% ee). Our methodology not only provides a promising avenue for the stereoselective incorporation of alkyl functionalities onto specific sites of biologically significant molecules but also offers a practical approach for regioselectivity switching while simultaneously achieving high asymmetric induction within photochemical reactions.
Collapse
Affiliation(s)
- Fuxing Yang
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Longxiao Chi
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Chen X, Li HH, Kramer S. Photoinduced Copper-Catalyzed Enantioselective Allylic C(sp 3)-H Oxidation of Acyclic 1-Aryl-2-alkyl Alkenes as Limiting Substrates. Angew Chem Int Ed Engl 2024; 63:e202413190. [PMID: 39132953 DOI: 10.1002/anie.202413190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
Herein, we disclose a simple copper-catalyzed method for enantioselective allylic C(sp3)-H oxidation of unsymmetrical acyclic alkenes, specifically 1-aryl-2-alkyl alkenes. The C-H substrates are used in limiting amounts, and the products are obtained with high enantioselectivity, E/Z-selectivity, and regioselectivity. The method exhibits broad functional group tolerance, and E/Z-alkene mixtures are suitable C-H substrates. The transformation is enabled by light irradiation, which sustains the enantioselective copper catalysis by photoinduced oxidant homolysis.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Feng J, Xi LL, Lu CJ, Liu RR. Transition-metal-catalyzed enantioselective C-N cross-coupling. Chem Soc Rev 2024; 53:9560-9581. [PMID: 39171573 DOI: 10.1039/d4cs00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chiral amine scaffolds are among the most important building blocks in natural products, drug molecules, and functional materials, which have prompted chemists to focus more on their synthesis. Among the accomplishments in chiral amine synthesis, transition-metal-catalyzed enantioselective C-N cross-coupling is considered one of the most efficient protocols. This approach combines traditional C(sp2)-N cross-coupling methods (such as the Buchwald-Hartwig reaction Ullmann-type reaction, and Chan-Evans-Lam reaction), aryliodonium salt chemistry and radical chemistry, providing an attractive pathway to a wide range of structurally diverse chiral amines with high enantioselectivity. This review summarizes the established protocols and offers a comprehensive outlook on the promising enantioselective C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
- Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Ahmed H, Ghosh B, Breitenlechner S, Feßner M, Merten C, Bach T. Intermolecular Enantioselective Amination Reactions Mediated by Visible Light and a Chiral Iron Porphyrin Complex. Angew Chem Int Ed Engl 2024; 63:e202407003. [PMID: 38695376 DOI: 10.1002/anie.202407003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/15/2024]
Abstract
In the presence of 1 mol % of a chiral iron porphyrin catalyst, various 3-arylmethyl-substituted 2-quinolones and 2-pyridones underwent an enantioselective amination reaction (20 examples; 93-99 % ee). The substrates were used as the limiting reagents, and fluorinated aryl azides (1.5 equivalents) served as nitrene precursors. The reaction is triggered by visible light which allows a facile dediazotation at ambient temperature. The selectivity of the reaction is governed by a two-point hydrogen bond interaction between the ligand of the iron catalyst and the substrate. Hydrogen bonding directs the amination to a specific hydrogen atom within the substrate that is displaced by the nitrogen substituent either in a concerted fashion or by a rebound mechanism.
Collapse
Affiliation(s)
- Hussayn Ahmed
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Biki Ghosh
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stefan Breitenlechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Malte Feßner
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Christian Merten
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
6
|
Jain S, Ospina F, Hammer SC. A New Age of Biocatalysis Enabled by Generic Activation Modes. JACS AU 2024; 4:2068-2080. [PMID: 38938808 PMCID: PMC11200230 DOI: 10.1021/jacsau.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Biocatalysis is currently undergoing a profound transformation. The field moves from relying on nature's chemical logic to a discipline that exploits generic activation modes, allowing for novel biocatalytic reactions and, in many instances, entirely new chemistry. Generic activation modes enable a wide range of reaction types and played a pivotal role in advancing the fields of organo- and photocatalysis. This perspective aims to summarize the principal activation modes harnessed in enzymes to develop new biocatalysts. Although extensively researched in the past, the highlighted activation modes, when applied within enzyme active sites, facilitate chemical transformations that have largely eluded efficient and selective catalysis. This advance is attributed to multiple tunable interactions in the substrate binding pocket that precisely control competing reaction pathways and transition states. We will highlight cases of new synthetic methodologies achieved by engineered enzymes and will provide insights into potential future developments in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | - Stephan C. Hammer
- Research Group for Organic Chemistry
and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|