1
|
Ye CZ, Del Rosal I, Ouellette ET, Hohloch S, Maron L, Camp C, Arnold J. Reduction of CS 2 to an ethanetetrathiolate by a hydride-bridged uranium-iridium heterobimetallic complex. Chem Commun (Camb) 2024; 60:12377-12380. [PMID: 39370889 DOI: 10.1039/d4cc02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We report the synthesis of a heterobimetallic U(III)-Ir species which reacts with CS2 to form the novel ethanetetrathiolate fragment via hydride insertion and C-C coupling. Computational studies suggest the formation of a radical intermediate, which may couple with another equivalent to form the final product.
Collapse
Affiliation(s)
- Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephan Hohloch
- University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Li K, Del Rosal I, Zhao Y, Maron L, Zhu C. Planar Tetranuclear Uranium Hydride Cluster Supported by ansa-Bis(cyclopentadienyl) Ligands. Angew Chem Int Ed Engl 2024; 63:e202405494. [PMID: 38661015 DOI: 10.1002/anie.202405494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Polynuclear metal hydride clusters play important roles in various catalytic processes, with most of the reported polynuclear metal hydride clusters adopting a polyhedral three-dimensional structure. Herein, we report the first example of a planar tetranuclear uranium hydride cluster [(CpCMe2CMe2Cp)U]4(μ2-H)4(μ3-H)4 (U4H8). It was synthesized by reacting an ansa-bis(cyclopentadienyl) ligand-supported uranium chloride precursor [(CpCMe2CMe2Cp)U]3(μ2-Cl)3(μ3-Cl)2 with NaHBEt3. The presence of hydrides in U4H8 was confirmed by NMR spectroscopy and its reactivity with phenol and carbon tetrachloride. DFT calculations also facilitated the determination of the hydrides' positions in U4H8, featuring four bridging μ2-H ligands and four face-capping μ3-H ligands, with the four U centers arranged in a rhombic geometry. The U4H8 represents not only the first example of planar polynuclear actinide metal hydride cluster but also the uranium hydride cluster with the highest nuclearity reported to date.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Ye CZ, Del Rosal I, Kelly SN, Brackbill IJ, Maron L, Camp C, Arnold J. Photolysis-driven bond activation by thorium and uranium tetraosmate polyhydride complexes. Chem Sci 2024; 15:9784-9792. [PMID: 38939147 PMCID: PMC11205275 DOI: 10.1039/d4sc02380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Transition metal multimetallic complexes have seen intense study due to their unique bonding and potential for cooperative reactivity, but actinide-transition metal (An-TM) species are far less understood. We have synthesized uranium- and thorium-osmium heterometallic polyhydride complexes in order to study An-Os bonding and investigate the reactivity of An-Os interactions. Computational studies suggest the presence of a significant bonding interaction between the actinide center and the four coordinated osmium centers supported by bridging hydrides. Upon photolysis, these complexes undergo intramolecular C-H activation with the formation of an Os-Os bond, while the thorium complex may activate an additional C-H bond of the benzene solvent, resulting in a μ-η1,η1 phenyl ligand across one Th-Os interaction.
Collapse
Affiliation(s)
- Christopher Z Ye
- Department of Chemistry, Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California Berkeley California 94720 USA
| | - Iker Del Rosal
- LPCNO, INSA Toulouse, Université de Toulouse 135 Avenue de Rangueil Toulouse 31077 France
| | - Sheridon N Kelly
- Department of Chemistry, Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California Berkeley California 94720 USA
| | - I Joseph Brackbill
- Department of Chemistry, Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California Berkeley California 94720 USA
| | - Laurent Maron
- LPCNO, INSA Toulouse, Université de Toulouse 135 Avenue de Rangueil Toulouse 31077 France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, CPE-Lyon, Institut de Chimie de Lyon, Université Claude Bernard Lyon 1 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - John Arnold
- Department of Chemistry, Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California Berkeley California 94720 USA
| |
Collapse
|
4
|
Gremillion AJ, Ross J, Yu X, Ishtaweera P, Anwander R, Autschbach J, Baker GA, Kelley SP, Walensky JR. Facile Oxidation of Ce(III) to Ce(IV) Using Cu(I) Salts. Inorg Chem 2024; 63:9602-9609. [PMID: 38507258 DOI: 10.1021/acs.inorgchem.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The synthesis, luminescence, and electrochemical properties of the Ce(III) compound, [(C5Me5)2(2,6-iPr2C6H3O)Ce(THF)], 1, were investigated. Based on the electrochemical data, treatment of 1 with CuX (X = Cl, Br, I) results in the formation of the corresponding Ce(IV) complexes, [(C5Me5)2(2,6-iPr2C6H3O)Ce(X)]. Each complex has been characterized using NMR, IR, and UV-vis spectroscopy as well as structurally determined using X-ray crystallography. Additionally, the treatment of [(C5Me5)2(2,6-iPr2C6H3O)Ce(Br)] with AgF results in the formation of the putative [(C5Me5)2(2,6-iPr2C6H3O)Ce(F)]. The electronic structure of these Ce(IV)-X complexes was investigated by bond analyses and the Ce(IV)-F moiety using quantum chemistry NMR calculations.
Collapse
Affiliation(s)
- Alexander J Gremillion
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jason Ross
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Piyuni Ishtaweera
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Dankert F, Hevia E. Synthesis and Modular Reactivity of Low Valent Al/Zn Heterobimetallics Supported by Common Monodentate Amides. Chemistry 2024; 30:e202304336. [PMID: 38189633 DOI: 10.1002/chem.202304336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Recent advances on low valent main group metal chemistry have shown the excellent potential of heterobimetallic complexes derived from Al(I) to promote cooperative small molecule activation processes. A signature feature of these complexes is the use of bulky chelating ligands which act as spectators providing kinetic stabilization to their highly reactive Al-M bonds. Here we report the synthesis of novel Al/Zn bimetallics prepared by the selective formal insertion of AlCp* into the Zn-N bond of the utility zinc amides ZnR2 (R=HMDS, hexamethyldisilazide; or TMP, 2,2,6,6-tetramethylpiperidide). By systematically assessing the reactivity of the new [(R)(Cp*)AlZn(R)] bimetallics towards carbodiimides, structural and mechanistic insights have been gained on their ability to undergo insertion in their Zn-Al bond. Disclosing a ligand effect, when R=TMP, an isomerization process can be induced giving [(TMP)2AlZn(Cp*)] which displays a special reactivity towards carbodiimides and carbon dioxide involving both its Al-N bonds, leaving its Al-Zn bond untouched.
Collapse
Affiliation(s)
- Fabian Dankert
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| |
Collapse
|
6
|
Zatsepin P, Moriyama T, Chen C, Muratsugu S, Tada M, Yamashita M. Vanadium Alumanyl Complex: Synthesis, Characterization, Reactivity, and Application as a Catalyst for C-H Alumanylation of Alkenes. J Am Chem Soc 2024; 146:3492-3497. [PMID: 38279921 DOI: 10.1021/jacs.3c13418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
A complex containing a V-Al bond is described. This species can be prepared by either transmetalation of a previously disclosed alumanylpotassium with Cp2VCl or photolytic oxidative alumination of Cp2V using the corresponding dialumane. Reaction of the resulting V-Al complex with H2 gave a Cp2V-dihydridoaluminate complex. These complexes were studied with X-ray crystallography, vanadium K-edge XANES spectroscopy, and DFT calculations. Finally, the reactivity of these molecules was studied opening the way to a catalytic C-H alumanylation of alkenes.
Collapse
Affiliation(s)
- Pavel Zatsepin
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
| | - Takumi Moriyama
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Aichi, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
7
|
Brackbill IJ, Rajeshkumar T, Maron L, Bergman RG, Arnold J. Spectroscopic and Computational Evidence of Uranium Dihydrogen Complexes. J Am Chem Soc 2024; 146:1257-1261. [PMID: 38189272 DOI: 10.1021/jacs.3c12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.
Collapse
Affiliation(s)
- I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| | - Thayalan Rajeshkumar
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| |
Collapse
|