1
|
Wang Q, Huang X, Wang D, Zhong B, Xu M, Liu L, Liu T. Synthesis and characterization of MIL-101(Fe) nanoparticle and Patchouli alcohol composites as a antimicrobial agents. Microb Pathog 2025; 203:107460. [PMID: 40064406 DOI: 10.1016/j.micpath.2025.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Multidrug-resistant Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are emerging in large numbers, while the rapid development of antimicrobial nanomaterials offers new opportunities to combat bacterial infections and antimicrobial resistance. OBJECTIVES We employed the nanomaterial MIL-101(Fe) as a carrier loaded with Patchouli alcohol (PA) to form the complex MIL-101(Fe)-PA. and to investigate the inhibitory activity of MIL-101(Fe)-PA against S. aureus and E. coli. METHODS According to the literature,we prepared MIL-101(Fe)-PA by solvent method. Characterization of MIL-101(Fe)-PA was carried out using scanning electron microscopy(SEM), Fourier transform infrared(FT-IR) spectroscopy,X-ray diffractometer (XRD) and Brunauer-Emmett-Teller (BET) adsorption analysis. In the bacteriostatic experiments,its bacteriostatic effect was investigated by Minimal inhibitory concentration (MIC) experiments, cell proliferation,and growth curves of bacteria. Then its cytotoxicity was explored by cytotoxicity experiments. RESULTS The characterization results indicated that we successfully prepared the complex MIL-101(Fe)-PA,which showed significant bacteriostatic effects against S. aureus and E. coli at 2 mg/mL. The inhibitory effect was stronger than that of MIL-101(Fe) as well as PA. CONCLUSION It shows that MIL-101(Fe)-PA has excellent inhibitory effect on S. aureus and E. coli.
Collapse
Affiliation(s)
- Qiaowen Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Xiao Huang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Dingjun Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Biying Zhong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Mengyuan Xu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Li Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| |
Collapse
|
2
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
3
|
Mohan B, Modi K, Singh G, Paul A, Garazade IM, Pombeiro AJL, Liu X, Sun W, Kim SS. Understanding the Electrochemical MOF Sensors in Detecting Cancer with Special Emphasis on Breast Carcinoma Biomarkers. Top Curr Chem (Cham) 2025; 383:9. [PMID: 39966301 DOI: 10.1007/s41061-025-00493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025]
Abstract
Cancer is a disease that claims millions of lives each year, often because early symptoms go unnoticed, a situation which severely impacts society. Point-of-care biosensors using metal-organic frameworks (MOFs) have the power to transform cancer biomarker detection due to their exceptional structural and conductive properties. This review discusses the electrochemical sensor's design and development of electroactive MOF materials with mechanistic insights. It highlights recent advancements in utilizing MOF composites to effectively detect cancer biomarkers in real samples. The emphasis on the critical application of MOFs in breast cancer biomarker detection presents its importance for women's health. The review thoroughly examines the adjustable structures, porosity, and fabrication capabilities of MOFs in identifying cancer biomarkers. It provides a detailed analysis of methods to enhance the sensitivity and applicability of MOF composites for cancer detection. Furthermore, the review explores strategies to boost sensor performance, tackles existing challenges head-on, and outlines promising prospects. It emphasizes the urgent need for advanced cancer detection tools and aims to motivate researchers to develop innovative solutions.
Collapse
Affiliation(s)
- Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
| | - Krunal Modi
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| | - Anup Paul
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Ismayil M Garazade
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Wei Sun
- Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Hua Y, Qin M, Lu S, Zhang Y, Tan S, Ding D, Wang L. Hyaluronic acid-functionalized MOFs for combined sunitinib and siRNA therapy in renal cell carcinoma. Int J Biol Macromol 2024; 283:137317. [PMID: 39510472 DOI: 10.1016/j.ijbiomac.2024.137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sunitinib is a first-line treatment for renal cell carcinoma (RCC), but suffers from drug resistance, causing therapy failure. Therefore, nano-scale delivery systems should be introduced for targeted delivery. Metal-organic frameworks (MOFs) are attractive drug carriers that not only enable multidrug combination therapies but also exert photodynamic effects by incorporating photosensitizers as components. Here, a Zr-based porphyrinic nanoscale MOF, PCN-224, was prepared as the carrier for the co-delivery of sunitinib and the siRNA against vascular endothelial growth factor receptor-2 (VEGFR-2). Drug-loaded PCN-224 is coated with hyaluronic acid (HA) to prevent drug molecular leakage and to exert tumor-targeting effects (CD44 in tumor cells). Photodynamic therapy was conducted under 660 nm laser (50 mW·cm-2, 10 min) irradiation. Compared with St/siVEGFR-2@PCN-224@HA without the HA coating, St/siVEGFR-2@PCN-224@HA significantly suppressed cell viability and promoted cell apoptosis. Laser irradiation further increased the anti-cancer effect of St/siVEGFR-2@PCN-224@HA by generating cytotoxic ROS. H&E staining of major organs revealed no signs of damage, indicating the biosafety of St/siVEGFR-2@PCN-224@HA. The prepared St/siVEGFR-2@PCN-224@HA system enables triple inhibition of tumor growth via a combination of targeted therapy and genetic and photodynamic therapy to enhance the therapeutic effects on RCC.
Collapse
Affiliation(s)
- Ye Hua
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Muting Qin
- Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| | - Lu Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110011, Liaoning, China.
| |
Collapse
|
5
|
Gulati S, Ansari N, Moriya Y, Joshi K, Prasad D, Sajwan G, Shukla S, Kumar S, Varma RS. Nanobiopolymers in cancer therapeutics: advancing targeted drug delivery through sustainable and controlled release mechanisms. J Mater Chem B 2024; 12:11887-11915. [PMID: 39502076 DOI: 10.1039/d4tb00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nanobiopolymers have emerged as a transformative frontier in cancer treatment, leveraging nanotechnology to transform drug delivery. This review provides a comprehensive exploration of the multifaceted landscape of nano-based biopolymers, emphasizing their diverse sources, synthesis methods, and classifications. Natural, synthetic, and microbial nanobiopolymers are scrutinized, along with elucidation of their underlying mechanisms and impact on cancer drug delivery; the latest findings on their deployment as targeted drug delivery agents for cancer treatment are discussed. A detailed analysis of nanobiopolymer sources, including polysaccharides, peptides, and nucleic acids, highlights critical attributes like biodegradability, renewability, and sustainability essential for therapeutic applications. The classification of nanobiopolymers based on their origin and differentiation among natural, synthetic, and microbial sources are thoroughly examined for inherent advantages, challenges, and suitability for cancer therapeutics. The importance of targeted drug release at tumour sites, crucial for minimizing adverse effects on normal tissues, is discussed, encompassing various mechanisms. The role of polymer membrane coatings as a pivotal barrier for facilitating controlled drug release through diffusion is elucidated, providing further insight into efficient methods for cancer treatment and thus consolidating the current knowledge base for researchers and practitioners in the field of nanobiopolymers and cancer therapeutics.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Nabeela Ansari
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Yamini Moriya
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Kumud Joshi
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Disha Prasad
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Gargi Sajwan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| |
Collapse
|
6
|
Liu L, Qi G, Wang M, He J, Zheng Y, Guan J, Lv P, Zeng D. Construction of intelligent response gene vector based on MOF/Fe 3O 4/AuNRs for tumor-targeted gene delivery. Int J Biol Macromol 2024; 277:134313. [PMID: 39098672 DOI: 10.1016/j.ijbiomac.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to efficiently carry cargo due to their excellent porosity and high surface area. Nevertheless, conventional MOFs and their derivatives exhibit low efficiency in transporting nucleic acids and other small molecules, as well as having poor colloidal stability. In this study, a ZIF-90 loaded with iron oxide nanoparticles and Au nanorods was prepared, and then surface-functionalized with polyethyleneimine (PEI) to create a multifunctional nanocomposite (AFZP25k) with pH, photothermal, and magnetic responsiveness. AFZP25k can condense plasmid DNA to form AFZP25k/DNA complexes, with a maximum binding efficiency of 92.85 %. DNA release assay showed significant light and pH responsiveness, with over 80 % cumulative release after 6 h of incubation. When an external magnetic field is applied, the cellular uptake efficiency in HeLa cells reached 81.51 %, with low cytotoxicity and specific distribution. In vitro transfection experiments demonstrated a gene transfection efficiency of 44.77 % in HeLa cells. Following near-infrared irradiation, the uptake efficiency and transfection efficiency of AFZP25k in HeLa cells increased by 21.3 % and 13.59 % respectively. The findings indicate the potential of AFZP25k as an efficient and targeted gene delivery vector in cancer gene therapy.
Collapse
Affiliation(s)
- Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guowei Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiayu He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqiu Zheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peiwen Lv
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
7
|
Wang Y, Ma J, Jin F, Li T, Javanmardi N, He Y, Zhu G, Zhang S, Xu J, Wang T, Feng Z. Recent Advances in the Synthesis and Application of Monolayer 2D Metal-Organic Framework Nanosheets. SMALL SCIENCE 2024; 4:2400132. [PMID: 40212069 PMCID: PMC11935192 DOI: 10.1002/smsc.202400132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Indexed: 04/13/2025] Open
Abstract
Monolayer 2D metal-organic framework (MOF) nanosheets, characterized by abundant exposed active sites and tunable structure and function (such as altering the metal nodes or organic ligands), have emerged as a pivotal class of 2D materials, demonstrating irreplaceable applications across diverse research domains in materials and chemistry. This review provides a comprehensive survey of the latest research progress in the synthesis of monolayer 2D MOF nanosheets. Specifically, recent synthetic strategies, including top-down and bottom-up methods, are delved and their applications in gas separation, catalysis, sensing platforms, and energy storage are explored. Additionally, the challenges faced in the investigation of monolayer 2D MOF nanosheets are elucidated and future opportunities for these materials as a novel generation of 2D materials are outlined.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Juan Ma
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Fei Jin
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Tong Li
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Yuyuan He
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Guanzhou Zhu
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Siwei Zhang
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Jian‐Da Xu
- Department of OrthopaedicsChangzhou hospital of traditional Chinese MedicineChangzhou hospital affiliated to Nanjing University of Chinese MedicineChangzhou213003P. R. China
| | - Ting Wang
- State Key Laboratory of Digital Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Zhang‐Qi Feng
- School of Chemistry and Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| |
Collapse
|
8
|
Tocco D, Joshi M, Mastrangelo R, Fratini E, Salis A, Hartmann M. A green approach to encapsulate proteins and enzymes within crystalline lanthanide-based Tb and Gd MOFs. Dalton Trans 2024; 53:14171-14181. [PMID: 39044548 DOI: 10.1039/d4dt01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In this work, bovine serum albumin (BSA) and Aspergillus sp. laccase (LC) were encapsulated in situ within two lanthanide-based MOFs (TbBTC and GdBTC) through a green one-pot synthesis (almost neutral aqueous solution, T = 25 °C, and atmospheric pressure) in about 1 h. Pristine MOFs and protein-encapsulated MOFs were characterized through wide angle X-ray scattering, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopies. The location of immobilized BSA molecules, used as a model protein, was investigated through small angle X-ray scattering. BSA occurs both on the inner and on the outer surface of the MOFs. LC@TbBTC, and LC@GdBTC samples were also characterized in terms of specific activity, kinetic parameters, and storage stability both in water and acetate buffer. The specific activity of LC@TbBTC was almost twice that of LC@GdBTC (10.8 μmol min-1 mg-1vs. 6.6 μmol min-1 mg-1). Both biocatalysts showed similar storage stabilities retaining ∼60% of their initial activity after 7 days and ∼20% after 21 days. LC@TbBTC dispersed in acetate buffer exhibited a higher storage stability than LC@GdBTC. Additionally, terbium-based MOFs showed interesting luminescent properties. Together, these findings suggest that TbBTC and GdBTC are promising supports for the in situ immobilization of proteins and enzymes.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Madhura Joshi
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Chakraborty A, Nandi R, Kumar D, Acharya H. Investigation on the Drug Release Efficacy of the Ibuprofen-Loaded ZIF-8/Fe 3O 4 NPs Nanocarrier. ACS OMEGA 2024; 9:32418-32428. [PMID: 39100286 PMCID: PMC11292841 DOI: 10.1021/acsomega.3c09135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 08/06/2024]
Abstract
In this work, a one-pot multicomponent synthesis of the ibuprofen-loaded Fe3O4 nanoparticles-supported zeolitic imidazolate framework-8 (Ibu-ZIF-8/Fe3O4 NPs) nanohybrid was carried out. The ZIF-8/Fe3O4 NPs nanohybrid was used as a drug carrier for the in vitro release of ibuprofen in a PBS solution. The structure and morphology of the synthesized materials were investigated by powder X-ray diffraction (PXRD) analysis, transmission electron microscopy (TEM) analysis, UV-visible absorption studies, FTIR spectroscopy, and thermogravimetric analysis (TGA). The ibuprofen release kinetics was studied by UV-visible spectroscopy. The mechanism of drug delivery was thoroughly investigated and the Higuchi model was found as the best-fitted model for the ibuprofen release study. The 20 wt % Fe3O4 NPs-supported ZIF-8 nanohybrid exhibited more than 95% ibuprofen release efficiency in phosphate buffer saline of pH 7.4 within 2 h. The separation ability of the nanohybrid was very good, and it was easily separated by a simple commercial magnet. In order to investigate the cell viability, the cytotoxicity of ZIF-8, Fe3O4 NPs, and ZIF-8/20 wt % Fe3O4 NPs was investigated using MTT assays against Leishmania donovani promastigotes. The ZIF-8/20 wt % Fe3O4 NPs nanohybrid carrier exhibited a cell growth inhibition effect with a high correlation coefficient and low probability (p) values. The high release of drug molecules may be due to the more open site of the ZIF-8/Fe3O4 NPs nanohybrid. The drug release profile suggests that the nanohybrid can be potentially used as a drug carrier for targeted drug delivery systems.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Centre
for Soft Matters, Department of Chemistry, Assam University, Silchar 788011, India
| | - Rajat Nandi
- Department
of Microbiology, Assam University, Silchar 788011, India
| | - Diwakar Kumar
- Department
of Microbiology, Assam University, Silchar 788011, India
| | - Himadri Acharya
- Centre
for Soft Matters, Department of Chemistry, Assam University, Silchar 788011, India
| |
Collapse
|
10
|
Deng Y, Guo M, Zhou L, Huang Y, Srivastava S, Kumar A, Liu JQ. Prospects, advances and biological applications of MOF-based platform for the treatment of lung cancer. Biomater Sci 2024; 12:3725-3744. [PMID: 38958409 DOI: 10.1039/d4bm00488d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nowadays in our society, lung cancer is exhibiting a high mortality rate and threat to human health. Conventional diagnostic techniques used in the field of lung cancer often necessitate the use of extensive instrumentation, exhibit a tendency for false positives, and are not suitable for widespread early screening purposes. Conventional approaches to treat lung cancer primarily involve surgery, chemotherapy, and radiotherapy. However, these broad-spectrum treatments suffer from drawbacks such as imprecise targeting and significant side effects, which restrict their widespread use. Metal-organic frameworks (MOFs) have attracted significant attention in the diagnosis and treatment of lung cancer owing to their tunable electronic properties and structures and potential applications. These porous nanomaterials are formed through the intricate assembly of metal centers and organic ligands, resulting in highly versatile frameworks. Compared to traditional diagnostic and therapeutic modalities, MOFs can improve the sensitivity of lung cancer biomarker detection in the diagnosis of lung cancer. In terms of treatment, they can significantly reduce side effects and improve therapeutic efficacy. Hence, this perspective provides an overview concerning the advancements made in the field of MOFs as potent biosensors for lung cancer biomarkers. It also delves into the latest research dealing with the use of MOFs as carriers for drug delivery. Additionally, it explores the applications of MOFs in various therapeutic approaches, including chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Furthermore, this review comprehensively analyses potential applications of MOFs as biosensors in the field of lung cancer diagnosis and combines different therapeutic approaches aiming for enhanced therapeutic efficacy. It also presents a concise overview of the existing obstacles, aiming to pave the way for future advancements in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yong Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Shreya Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
11
|
Liu Y, Lin Y, Wang W, Min K, Ling W, Ma W, Zhang W, Hou X, Wei L, Liu Q, Jiang G. Dose-Dependent Effect on Plant Growth of Exposure to Metal-Organic Framework MIL-101(Cr). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8009-8019. [PMID: 38557036 DOI: 10.1021/acs.est.3c09086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the increasing use of metal-organic frameworks (MOFs), they will inevitably enter the environment intentionally or unintentionally. However, the effects of MOFs on plant growth are poorly understood. Here, we investigated the effects of exposure of the rhizosphere to MOFs on plant growth. MIL-101(Cr) was selected as a research model due to its commercial availability and wide use. Soybean plants at the two-leaf stage were subjected to various durations (1-7 days) and concentrations (0-1000 mg/L) of exposure in hydroculture with a control group treated with ultrapure water. We found that MIL-101(Cr) had a positive effect on soybean growth at a lower dose (i.e., 200 mg/L); however, at higher doses (i.e., 500 and 1000 mg/L), it exhibited significant toxicity to plant growth, which is evidenced by leaf damage. To investigate the mechanism of this effect, we used Cr as an indicator to quantify, track, and image MIL-101(Cr) in the plant with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Results indicated that MIL-101(Cr) primarily accumulated in the cortex of roots (up to 40 times higher than that in stems), with limited translocation to stems and negligible presence in leaves and cotyledons. In addition, metabolomic analysis of soybeans indicated that low-dose MIL-101(Cr) could increase the sucrose content of soybean roots to promote plant growth, while a high dose could induce lipid oxidation in roots. This study provides valuable insights into the ecological toxicology of MOFs and underscores the importance of assessing their environmental impact for sustainable agricultural practices.
Collapse
Affiliation(s)
- Yacong Liu
- College of Sciences, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wende Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|