1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Zhao X, Shan G, Xing D, Gao H, Xiong Z, Hui W, Gong M. Interfering with UBE2L3 expression targets regulation of MLKL to promote necroptosis inhibition of growth in osteosarcoma. World J Surg Oncol 2025; 23:63. [PMID: 39988669 PMCID: PMC11849225 DOI: 10.1186/s12957-025-03715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND In previous studies, elevated expression of UBE2L3 has been observed in osteosarcoma cells, and silencing UBE2L3 has been shown to promote oxidative stress and induce necroptosis. However, the exact molecular mechanisms underlying these findings remain unclear. OBJECTIVE The purpose of this study is to investigate the molecular mechanisms by which interfering with UBE2L3 expression promotes necroptosis and impacts the progression of osteosarcoma, building upon previous in vitro cell experiments. METHODS Osteosarcoma cells were transfected with shNC and shUBE2L3 plasmids, and the cells were injected into the right tibia of nude mice to establish a tumor xenograft model. The growth rate, changes in body weight, and tumor volume of the mice in each group were observed. After 15 days, the mice were sacrificed, and the tumors were dissected and analyzed for tumor volume. Immunohistochemical staining was performed to detect changes in the expression of necroptosis-related proteins, such as PCNA, p-MLKL, and p-RIP1. Additionally, U2OS and HOS cells were transfected with UBE2L3-silencing plasmids, and immunoprecipitation was performed to investigate the interaction between UBE2L3 and the necroptosis protein MLKL. By combining these experiments, we aim to evaluate the impact of UBE2L3 on necroptosis both in vitro and in vivo and elucidate its specific role in targeting MLKL to regulate necroptosis as a therapeutic approach for osteosarcoma. RESULTS After interfering with UBE2L3, the growth rate of tumors in nude mice significantly slowed down, accompanied by a notable reduction in tumor volume and weight. These findings suggest that inhibiting the expression of UBE2L3 can suppress the growth of osteosarcoma. Furthermore, immunohistochemical analysis revealed that following UBE2L3 interference, the intensity of staining for the necrotic proteins p-MLKL and p-RIP1 was increased and PCNA staining was decreased, indicating that interfering with UBE2L3 expression can promote necroptosis. Moreover, through transfection of UBE2L3 silencing plasmids into osteosarcoma cells in vitro, immunoprecipitation and ubiquitination results demonstrated that UBE2L3 can specifically bind to MLKL. Overexpression of UBE2L3 promoted the ubiquitination of MLKL and reduced its expression. Thus, down-regulation of UBE2L3 could modulate downstream MLKL expression and promote necrosis of osteosarcoma cells. CONCLUSION UBE2L3 selectively binds to MLKL, exerting ubiquitination-mediated regulation on downstream MLKL. Decreased expression of UBE2L3 modulates MLKL expression and promotes necrosis, thereby inhibiting osteosarcoma growth.
Collapse
Affiliation(s)
- Xiwu Zhao
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
- Department of Traumatic Orthopedics, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Guoqiang Shan
- Department of Traumatic Orthopedics, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Deguo Xing
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hongwei Gao
- Department of Traumatic Orthopedics, Shandong Public Health Clinical Center, Shandong University, Jinan, 250013, China
| | - Zhenggang Xiong
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Wenpeng Hui
- Department of Spinal Surgery, Shandong Second Provincial General Hospital, Jinan, 250022, China
| | - Mingzhi Gong
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, China.
- , No. 247, Beiyuan Street, Tianqiao District, Jinan City, Shandong Province, China.
| |
Collapse
|
3
|
Liu B, Liu R, Zhang X, Tian L, Li Z, Yu J. Ubiquitin-conjugating enzyme E2T confers chemoresistance of colorectal cancer by enhancing the signal propagation of Wnt/β-catenin pathway in an ERK-dependent manner. Chem Biol Interact 2025; 406:111347. [PMID: 39667421 DOI: 10.1016/j.cbi.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy is a major therapeutic option for colorectal cancer; however, the frequently acquired chemoresistance greatly limits the treatment efficacy of chemotherapeutic agents. Ubiquitin-conjugating enzyme E2T (UBE2T) is emerging as a key player in the development of therapy resistance. However, whether UBE2T participates in the acquisition of chemoresistance in colorectal cancer remains undetermined. The present work aimed to specify the role of UBE2T in the development of chemoresistance in colorectal cancer and decipher any potential underlying mechanisms. Significant up-regulation of UBE2T was observed in the clinical specimens of chemoresistant colorectal cancer patients compared with chemosensitive patients. Compared with parental cells, the levels of UBE2T were also dramatically elevated in oxaliplatin (OXA)- and 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Knockout of UBE2T rendered OXA- and 5-FU-resistant cells sensitive to OXA and 5-FU, respectively. Re-expression of UBE2T restored the chemoresistance of UBE2T-knockout OXA- and 5-FU-resistant cells. Mechanistically, phosphorylated GSK-3β, active β-catenin, c-myc and cyclin D1 levels were decreased in UBE2T-knockout OXA- and 5-FU-resistant cells, which were reversed by the re-expression of UBE2T. Moreover, knockout of UBE2T reduced the activation of ERK. The inhibition of ERK reversed the promotion effect of UBE2T on Wnt/β-catenin pathway. In vivo xenograft experiments demonstrated that knockout of UBE2T rendered the subcutaneous tumors formed by OXA-resistant cells sensitive to OXA. To conclude, UBE2T confers chemoresistance of colorectal cancer by boosting the signal propagation of the Wnt/β-catenin pathway in an ERK-dependent manner. Therefore, UBE2T could be a potential target for overcoming chemoresistance in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ultrasound, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| | - Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
4
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
5
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Uśpieński T, Niewiadomski P. The Proteasome and Cul3-Dependent Protein Ubiquitination Is Required for Gli Protein-Mediated Activation of Gene Expression in the Hedgehog Pathway. Cells 2024; 13:1496. [PMID: 39273066 PMCID: PMC11394618 DOI: 10.3390/cells13171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Many cellular processes are regulated by proteasome-mediated protein degradation, including regulation of signaling pathways and gene expression. Among the pathways regulated by the ubiquitin-proteasome system is the Hedgehog pathway and its downstream effectors, the Gli transcription factors. Here we provide evidence that proteasomal activity is necessary for maintaining the activation of the Hedgehog pathway, and this crucial event takes place at the level of Gli proteins. We undertook extensive work to demonstrate the specificity of the observed phenomenon by ruling out the involvement of primary cilium, impaired nuclear import, failed dissociation from Sufu, microtubule stabilization, and stabilization of Gli repressor forms. Moreover, we showed that proteasomal-inhibition-mediated Hedgehog pathway downregulation is not restricted to the NIH-3T3 cell line. We demonstrated, using CRISPR/Ca9 mutagenesis, that neither Gli1, Gli2, nor Gli3 are solely responsible for the Hedgehog pathway downregulation upon proteasome inhibitor treatment, and that Cul3 KO renders the same phenotype. Finally, we report two novel E3 ubiquitin ligases, Btbd9 and Kctd3, known Cul3 interactors, as positive Hedgehog pathway regulators. Our data pave the way for a better understanding of the regulation of gene expression and the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Tomasz Uśpieński
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Motawi TK, Shaker OG, Amr G, Senousy MA. RNA methylation machinery and m 6A target genes as circulating biomarkers of ulcerative colitis and Crohn's disease: Correlation with disease activity, location, and inflammatory cytokines. Clin Chim Acta 2024; 561:119831. [PMID: 38925436 DOI: 10.1016/j.cca.2024.119831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Accurate diagnosis of ulcerative colitis (UC) and Crohn's disease (CD), the main subtypes of inflammatory bowel disease (IBD), has been challenging due to the constraints of the current techniques. N6-methyl adenosine (m6A) regulators have evolved as key players in IBD pathogenesis; however, their relation to its clinical setting is largely unexplored. This study investigated the potential of selected RNA methylation machinery and m6A target genes as serum biomarkers of UC and CD, their predictive and discriminating capabilities, and their correlations with laboratory data, interleukin (IL)-6, interferon-γ, disease activity scores, and pathological features. Fifty UC and 45 CD patients, along with 30 healthy volunteers were enlisted. The mRNA expression levels of the m6A writers methyltransferase-like 3 (METTL3) and Wilms-tumor associated protein (WTAP), and the reader YTH domain family, member 1 (YTHDF1), along with the m6A candidate genes sex determining region Y-box 2 (SOX2), hexokinase 2 (HK2), and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) were upregulated in UC patients, whereas only METTL3, HK2, and UBE2L3 were upregulated in CD patients versus controls. Serum WTAP (AUC = 0.94, 95 %CI = 0.874-1.006) and HK2 (AUC = 0.911, 95 %CI = 0.843-0.980) expression levels showed excellent diagnostic accuracy for UC, METTL3 showed excellent diagnostic accuracy for CD (AUC = 0.91, 95 %CI = 0.828-0.992), meanwhile, WTAP showed excellent discriminative power between the two diseases (AUC = 0.91, 95 %CI = 0.849-0.979). Multivariate logistic analysis unveiled the association of METTL3 and UBE2L3 expression with the risk of CD and UC diagnosis, respectively, controlled by age and sex as confounders. Remarkable correlations were recorded between the gene expression of studied m6A regulators and targets in both diseases. Among UC patients, serum METTL3 and WTAP were correlated with UC extent/type, while WTAP was correlated with IL-6. Among CD patients, serum METTL3 and HK2 were correlated with CD activity index (CDAI) and CD location. In conclusion, m6A regulators and target genes are distinctly expressed in UC and CD clinical samples, correlate with disease activity and extent/location, and could serve as a novel approach to empower the diagnosis and stratification of IBD subtypes.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada Amr
- General Administration of Blood Banks, Ministry of Health and Population, Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
8
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
9
|
Abdul Rehman SA, Cazzaniga C, Di Nisio E, Antico O, Knebel A, Johnson C, Şahin AT, Ibrahim PEGF, Lamoliatte F, Negri R, Muqit MMK, De Cesare V. Discovery and characterization of noncanonical E2-conjugating enzymes. SCIENCE ADVANCES 2024; 10:eadh0123. [PMID: 38536929 PMCID: PMC10971424 DOI: 10.1126/sciadv.adh0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
E2-conjugating enzymes (E2s) play a central role in the enzymatic cascade that leads to the attachment of ubiquitin to a substrate. This process, termed ubiquitylation, is required to maintain cellular homeostasis and affects almost all cellular process. By interacting with multiple E3 ligases, E2s dictate the ubiquitylation landscape within the cell. Since its discovery, ubiquitylation has been regarded as a posttranslational modification that specifically targets lysine side chains (canonical ubiquitylation). We used Matrix-Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry to identify and characterize a family of E2s that are instead able to conjugate ubiquitin to serine and/or threonine. We used structural modeling and prediction tools to identify the key activity determinants that these E2s use to interact with ubiquitin as well as their substrates. Our results unveil the missing E2s necessary for noncanonical ubiquitylation, underscoring the adaptability and versatility of ubiquitin modifications.
Collapse
Affiliation(s)
- Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Chiara Cazzaniga
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Elena Di Nisio
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Clare Johnson
- MRCPPU Reagents and Services, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Alp T. Şahin
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Peter E. G. F. Ibrahim
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow St, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, via dei Sardi, 70 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Via degli Apuli 4, 00185 Rome, Italy
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
10
|
Loh YY, Anantharajan J, Huang Q, Xu W, Fulwood J, Ng HQ, Ng EY, Gea CY, Choong ML, Tan QW, Koh X, Lim WH, Nacro K, Cherian J, Baburajendran N, Ke Z, Kang C. Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening. Protein Sci 2024; 33:e4904. [PMID: 38358126 PMCID: PMC10868430 DOI: 10.1002/pro.4904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.
Collapse
Affiliation(s)
- Yong Yao Loh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Chong Yu Gea
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Meng Ling Choong
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
11
|
Hunt LC, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala V, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D/eff maintains a youthful proteome and ensures protein quality control during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571303. [PMID: 38168249 PMCID: PMC10759998 DOI: 10.1101/2023.12.12.571303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi by re-establishing the physiological levels of effRNAi-regulated proteins, which include several regulators of proteostasis. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Cai F, Xu H, Song S, Wang G, Zhang Y, Qian J, Xu L. Knockdown of Ubiquitin-Conjugating Enzyme E2 T Abolishes the Progression of Head and Neck Squamous Cell Carcinoma by Inhibiting NF-Κb Signaling and inducing Ferroptosis. Curr Protein Pept Sci 2024; 25:577-585. [PMID: 38584528 DOI: 10.2174/0113892037287640240322084946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Ubiquitin-conjugating enzyme 2T (UBE2T) has been reported to be associated with uncontrolled cell growth and tumorigenesis in multiple cancer types. However, the understanding of its regulatory role in the carcinogenesis of Head And Neck Squamous Cell Carcinoma (HNSC) is limited. METHODS UBE2T expression in HNSC patient samples and the correlation between its expression and patients' survival rates were evaluated using The Cancer Genome Atlas (TCGA) database. Cell survival and proliferation were investigated in UM-SCC1 and UM-SCC15 cells infected with control and shUBE2T lentivirus. The xenograft mouse model was established using UM-SCC15 cells to examine HNSC tumorigenesis with or without UBE2T. Western blot, qRT-PCR, and ferroptosis assays were carried out to disclose the interaction between UBE2T and NF-κB signaling and ferroptosis. RESULTS The increased expression of UBE2T was noted in tumor tissues of patients with HNSC, correlating with a significantly reduced overall survival time in this patient cohort. Knockdown of UBE2T inhibited HNSC tumorigenesis and tumor growth. Mechanistically, inhibition of UBE2T suppressed NF-κB signaling and induced ferroptosis in HNSC. CONCLUSION Our study underscores the multifaceted role of UBE2T in HNSC, illuminating its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Feng Cai
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Hongbo Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Shilong Song
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Gengming Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Yajun Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Jing Qian
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Lu Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| |
Collapse
|
14
|
Anantharajan J, Tan QW, Fulwood J, Sifang W, Huang Q, Ng HQ, Koh X, Xu W, Cherian J, Baburajendran N, Kang C, Ke Z. Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer. Biochem Biophys Res Commun 2023; 689:149238. [PMID: 37979329 DOI: 10.1016/j.bbrc.2023.149238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
UBE2T is an E2 ubiquitin ligase critical for ubiquitination of substrate and plays important roles in many diseases. Despite the important function, UBE2T is considered as an undruggable target due to lack of a pocket for binding to small molecules with satisfied properties for clinical applications. To develop potent and specific UBE2T inhibitors, we adopted a high-throughput screening assay and two compounds-ETC-6152 and ETC-9004 containing a sulfone tetrazole scaffold were identified. Solution NMR study demonstrated the direct interactions between UBE2T and compounds in solution. Further co-crystal structures reveal the binding modes of these compounds. Both compound hydrolysation and formation of a hydrogen bond with the thiol group of the catalytic cysteine were observed. The formation of covalent complex was confirmed with mass spectrometry. As these two compounds inhibit ubiquitin transfer, our study provides a strategy to develop potent inhibitors of UBE2T.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Wang Sifang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| |
Collapse
|
15
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
16
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Ujike-Hikichi M, Gon Y, Ooki T, Morisawa T, Mizumura K, Kozu Y, Hiranuma H, Nakagawa Y, Shimizu T, Maruoka S. Anti-UBE2T antibody: A novel biomarker of progressive-fibrosing interstitial lung disease. Respir Investig 2023; 61:579-587. [PMID: 37429071 DOI: 10.1016/j.resinv.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Anti-fibrotic therapy has demonstrated efficacy against progressive-fibrosing interstitial lung disease (PF-ILD); therefore, identifying disease behavior before progression has become a priority. As autoimmunity is implicated in the pathogenesis of various ILDs, this study explored circulating biomarkers that could predict the chronic progressive behavior of ILDs. METHODS A single-center retrospective cohort study was conducted. Circulating autoantibodies in patients with ILD were screened using microarray analysis to identify candidate biomarkers. An enzyme-linked immunosorbent assay was performed with a larger sample set for the quantification of antibodies. After 2 years of follow-up, ILDs were reclassified as PF or non-PF. The relationship between the participants' autoantibody levels measured at enrolment and final diagnosis of PF-ILD was determined. RESULTS In total, 61 healthy participants and 66 patients with ILDs were enrolled. Anti-ubiquitin-conjugating enzyme E2T (UBE2T) antibody was detected as a candidate biomarker. Anti-UBE2T antibody levels were elevated in patients with idiopathic pulmonary fibrosis (IPF). After following up on the study participants for 2 years, anti-UBE2T levels measured at enrolment significantly correlated with the new PF-ILD diagnosis. Immunohistochemical staining of normal lung tissues revealed sparsely located UBE2T in the bronchiole epithelium and macrophages, whereas IPF lung tissues showed robust expression in the epithelial lining of honeycomb structures. CONCLUSION To our knowledge, this is the first report to describe an anti-UBE2T antibody, a new biomarker that is significantly elevated in patients with ILD who present future disease progression.
Collapse
Affiliation(s)
- Mari Ujike-Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Ooki
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoko Morisawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisato Hiranuma
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Tang JQ, Marchand MM, Veggiani G. Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies. Cells 2023; 12:2117. [PMID: 37626927 PMCID: PMC10453149 DOI: 10.3390/cells12162117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.
Collapse
Affiliation(s)
- Jason Q. Tang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada
| | - Mary M. Marchand
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Mishra V, Crespo-Puig A, McCarthy C, Masonou T, Glegola-Madejska I, Dejoux A, Dow G, Eldridge MJG, Marinelli LH, Meng M, Wang S, Bennison DJ, Morrison R, Shenoy AR. IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation. Nat Commun 2023; 14:4385. [PMID: 37474493 PMCID: PMC10359330 DOI: 10.1038/s41467-023-40054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
Collapse
Affiliation(s)
- Vishwas Mishra
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Crespo-Puig
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Callum McCarthy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Tereza Masonou
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Izabela Glegola-Madejska
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Alice Dejoux
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Gabriella Dow
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew J G Eldridge
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Luciano H Marinelli
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Meihan Meng
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Shijie Wang
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel J Bennison
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Morrison
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
20
|
Ma N, Li Z, Yan J, Liu X, He L, Xie R, Lu X. Diverse roles of UBE2T in cancer (Review). Oncol Rep 2023; 49:69. [PMID: 36825587 PMCID: PMC9996685 DOI: 10.3892/or.2023.8506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
As a leading cause of mortalities worldwide, cancer results from accumulation of both genetic and epigenetic alterations. Disruption of epigenetic regulation in cancer, particularly aberrant ubiquitination, has drawn increasing interest in recent years. The present study aimed to review the roles of ubiquitin‑conjugating enzyme E2 T (UBE2T) and its associated pathways in the pathogenesis of pan‑cancer, and the development of small‑molecule modulators to regulate ubiquitination for treatment strategies. The current study comprehensively investigated the expression landscape and functional significance of UBE2T, as well as its correlation with cancer cell sensitivity to chemotherapy/radiotherapy. Multiple levels of evidence suggested that aberrant UBE2T played important roles in pan‑cancer. Information was collected from 16 clinical trials on ubiquitin enzymes, and it was found that these molecules had an important role in the ubiquitin‑proteasome system. Further studies are necessary to explore their feasibility and effectiveness as diagnostic and prognostic biomarkers, or as up/down‑stream and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Nengqian Ma
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Zhangzhan Li
- Radiotherapy Center, Department of Oncology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Jingting Yan
- Department of Ultrasound Medicine, Hengyang Central Hospital, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Xianrong Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Liyan He
- Department of Pain Rehabilitation, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Ruijie Xie
- Department of Hand and Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| | - Xianzhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Zhuhui, Hengyang, Hunan 421002, P.R. China
| |
Collapse
|
21
|
Qu G, Xu Y, Qu Y, Qiu J, Chen G, Zhao N, Deng J. Identification and validation of a novel ubiquitination-related gene UBE2T in Ewing's sarcoma. Front Oncol 2023; 13:1000949. [PMID: 36910645 PMCID: PMC9997212 DOI: 10.3389/fonc.2023.1000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Background Ewing's sarcoma (ES) is one of the most prevalent malignant bone tumors worldwide. However, the molecular mechanisms of the genes and signaling pathways of ES are still not well sufficiently comprehended. To identify candidate genes involved in the development and progression of ES, the study screened for key genes and biological pathways related to ES using bioinformatics methods. Methods The GSE45544 and GSE17618 microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. A protein-protein interaction (PPI) network was built, and key module analysis was performed using STRING and Cytoscape. A core-gene was gained and was validated by the validation dataset GSE67886 and immunohistochemistry (IHC). The diagnostic value and prognosis evaluation of ES were executed using, respectively, the ROC approach and Cox Regression. Results A total of 187 DEGs, consisting of 56 downregulated genes and 131 upregulated genes, were identified by comparing the tumor samples to normal samples. The enriched functions and pathways of the DEGs, including cell division, mitotic nuclear division, cell proliferation, cell cycle, oocyte meiosis, and progesterone-mediated oocyte maturation, were analyzed. There were 149 nodes and 1246 edges in the PPI network, and 15 hub genes were identified according to the degree levels. The core gene (UBE2T) showed high expression in ES, validated by using GSE67886 and IHC. The ROC analysis revealed UBE2T had outstanding diagnostic value in ES (AUC = 0.75 in the training set, AUC = 0.90 in the validation set). Kaplan-Meier (analysis of survival rate) and Cox Regression analyses indicated that UBE2T was a sign of adverse results for sufferers with ES. Conlusion UBE2T was a significant value biomarker for diagnosis and treatment of ES, thereby presenting a novel potential therapeutic target for ES as well as a new perspective for assessing the effect of treatment and prognostic prediction.
Collapse
Affiliation(s)
- Guoxin Qu
- Department of Orthopaedics, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China.,Department of General Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanchun Xu
- Department of General Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Department of Trauma Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Ye Qu
- Department of Trauma Surgery, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Jinchao Qiu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Guosheng Chen
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Nannan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.,Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Jin Deng
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| |
Collapse
|
22
|
A nomogram for predicting prognosis of multiple myeloma patients based on a ubiquitin-proteasome gene signature. Aging (Albany NY) 2022; 14:9951-9968. [PMID: 36534449 PMCID: PMC9831738 DOI: 10.18632/aging.204432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. However, the ubiquitin-proteasome system (UPS) genes have not yet been established as a prognostic predictor for MM, despite their potential applications in other cancers. METHODS RNA sequencing data and corresponding clinical information were acquired from Multiple Myeloma Research Foundation (MMRF)-COMMPASS and served as a training set (n=787). Validation of the prediction signature were conducted by the Gene Expression Omnibus (GEO) databases (n=1040). To develop a prognostic signature for overall survival (OS), least absolute shrinkage and selection operator regressions, along with Cox regressions, were used. RESULTS A six-gene signature, including KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T, was established. Kaplan-Meier survival analysis of the training and validation cohorts revealed that patients with high-risk conditions had a significantly worse prognosis than those with low-risk conditions. Furthermore, UPS-related signature is associated with a positive immune response. For predicting survival, a simple to use nomogram and the corresponding web-based calculator (https://jiangyanxiamm.shinyapps.io/MMprognosis/) were built based on the UPS signature and its clinical features. Analyses of calibration plots and decision curves showed clinical utility for both training and validation datasets. CONCLUSIONS As a result of these results, we established a genetic signature for MM based on UPS. This genetic signature could contribute to improving individualized survival prediction, thereby facilitating clinical decisions in patients with MM.
Collapse
|
23
|
UBE2L3 Reduces TRIM21 Expression and IL-1β Secretion in Epidermal Keratinocytes and Improves Psoriasis-Like Skin. J Invest Dermatol 2022; 143:822-831.e4. [PMID: 36502938 DOI: 10.1016/j.jid.2022.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Proinflammatory cytokines, such as IL-1β, are important mediators of psoriasis. UBE2L3, an E2 enzyme, is thought to be an indirect target of IL-1β secretion by binding to ubiquitin ligases such as TRIM21. However, its role in psoriasis remains unknown. In this study, we found that UBE2L3 expression was decreased in psoriatic epidermis, whereas caspase 1 and IL-1β signaling were strongly activated. When normal human epidermal keratinocytes were stimulated with nigericin, adenosine triphosphate, and poly(dA:dT), downregulation of UBE2L3 and increased secretion of IL-1β were observed. Treatment with a caspase 1 inhibitor reversed the decrease in the level of UBE2L3. In addition, UBE2L3 overexpression reduced TRIM21, decreased signal transducer and activator of transcription 3 pathway activity, and reduced the level of the IL-1β precursor (pro‒IL-1β). Consistently, silencing UBE2L3 enhanced TRIM21 expression, signal transducer and activator of transcription 3 activation, and pro‒IL-1β production. Finally, in an imiquimod-induced mouse model, UBE2L3 reduction and caspase 1 activation were localized in the epidermis, whereas overexpression of UBE2L3 ameliorated psoriasis-like lesions and reduced pro‒IL-1β and mature IL-1β levels in the epidermis. Thus, UBE2L3 may be a protective biomarker that regulates IL-1β and inhibits TRIM21 in the epidermis of psoriasis.
Collapse
|
24
|
Xu N, Cui Y, Shi H, Guo G, Sun F, Jian T, Rao H. UBE2T/STAT3 Signaling Promotes the Proliferation and Tumorigenesis in Retinoblastoma. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 35980647 PMCID: PMC9404369 DOI: 10.1167/iovs.63.9.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this paper was to investigate the expression and function of Ubiquitin-conjugating enzyme 2T (UBE2T), a human E2 ubiquitin-conjugating enzyme, in human retinoblastoma. Methods The expression of UBE2T in normal retina and retinoblastoma was analyzed using the Gene Expression Omnibus (GEO) databases, and its expression was immunohistochemically evaluated in 29 retinoblastoma sections and 5 normal retinas. Then CCK-8, flow cytometry, RNA-sequencing analysis, and in vivo assays were performed to explore the exact role of UBE2T in retinoblastoma. Results We found that retinoblastoma showed higher UBE2T expression than normal retina in GEO datasets and tissues. The immunoreactive score of UBE2T ≥4 was associated with group E in IIRC, T2-T4b in pTNM staging, poorly differentiated retinoblastoma, and high-risk histopathological factors. Knockdown of UBE2T reduced the cell viability, increased the apoptosis cells and G0/G1 cells, and inhibited subcutaneous tumor growth in vivo. Mechanistic studies showed that UBE2T knockdown induced down-regulation of phosphorylation of STAT3 and its downstream genes in vitro and in vivo. Rescue assays confirmed that STAT3 signaling pathway was involved in the effect of reduced cell viability, elevated apoptosis cells, and G0/G1 cells mediated by UBE2T knockdown. Conclusions Our data indicate that UBE2T significantly participates in the proliferation of retinoblastoma via the STAT3 signaling pathway, suggesting the potential of UBE2T as a therapeutic target for retinoblastoma treatment.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Oculoplastic and Orbital Diseases, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Tianjin, China
| | - Hong Shi
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Guodong Guo
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Fengyuan Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Oculoplastic and Orbital Diseases, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Tianming Jian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.,Department of Oculoplastic and Orbital Diseases, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huiying Rao
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Li L, Liu J, Huang W. E2F5 promotes proliferation and invasion of gastric cancer through directly upregulating UBE2T transcription. Dig Liver Dis 2022; 54:937-945. [PMID: 34583905 DOI: 10.1016/j.dld.2021.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
The underlying mechanisms of E2F5 upregulation and its pro-tumor functions have not been elucidated in gastric cancer (GC). Here, the expression, prognostic value, mutation status, and promoter methylation of E2F5 were evaluated. The effects of E2F5 depletion on cell proliferation and invasion in GC, were also assessed through in vitro experiments. Additionally, gene set enrichment analysis (GSEA) was applied to analyze the potential downstream regulator of E2F5. The study also assessed the correlation and transcription regulation between E2F5 and UBE2T. Finally, the roles of UBE2T in E2F5-related pro-tumor functions were examined. The findings revealed that E2F5 was upregulated and showed remarkable association with pathological variables and prognosis. Hypomethylation of the E2F5 promoter predicted poor prognosis and partially caused E2F5 upregulation in GC. E2F5 knockdown significantly inhibited the proliferation and invasion of GC cells. E2F5 had a significant positive correlation with UBE2T in GC. Mechanistically, E2F5 promoted UBE2T transcription and UBE2T overexpression reversed the effects of E2F5 depletion on the proliferation and invasion of cells in GC. Taken together, this study originally confirmed the upregulation of E2F5 in GC, revealed that E2F5 can directly upregulate UBE2T transcription, and subsequently promote the malignant progression, which highlights that the E2F5/UBE2T axis can potentially be used in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Lina Li
- Department of pathology, Heping hospital, Changzhi Medical College, Changzhi 046000, China
| | - Jie Liu
- Department of pathology, Changsha Central Hospital, Changsha 410004, China
| | - Wei Huang
- Department of Oncology, Xiangya Hospital, Central South University (CSU), Changsha 410008, China; Research Center of Carcinogenesis and Targeted Therapy (RCCT), Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
26
|
Spear LA, Huang Y, Chen J, Nödling AR, Virdee S, Tsai YH. Selective Inhibition of Cysteine-Dependent Enzymes by Bioorthogonal Tethering. J Mol Biol 2022; 434:167524. [PMID: 35248542 DOI: 10.1016/j.jmb.2022.167524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
A general approach for the rapid and selective inhibition of enzymes in cells using a common tool compound would be of great value for research and therapeutic development. We previously reported a chemogenetic strategy that addresses this challenge for kinases, relying on bioorthogonal tethering of a pan inhibitor to a target kinase through a genetically encoded non-canonical amino acid. However, pan inhibitors are not available for many enzyme classes. Here, we expand the scope of the chemogenetic strategy to cysteine-dependent enzymes by bioorthogonal tethering of electrophilic warheads. For proof of concept, selective inhibition of two E2 ubiquitin-conjugating enzymes, UBE2L3 and UBE2D1, was demonstrated in biochemical assays. Further development and optimization of this approach should enable its use in cells as well as with other cysteine-dependent enzymes, facilitating the investigation of their cellular function and validation as therapeutic targets.
Collapse
Affiliation(s)
- Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinghao Chen
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
27
|
Huang W, Huang H, Xiao Y, Wang L, Zhang T, Fang X, Xia X. UBE2T is upregulated, predicts poor prognosis, and promotes cell proliferation and invasion by promoting epithelial-mesenchymal transition via inhibiting autophagy in an AKT/mTOR dependent manner in ovarian cancer. Cell Cycle 2022; 21:780-791. [PMID: 35130130 PMCID: PMC8973388 DOI: 10.1080/15384101.2022.2031426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Aberrant upregulation and oncogenic roles of UBE2T are revealed in several cancers. However, the expression, clinical significance, and functions of UBE2T have not been explored in ovarian cancer (OC). In this study, the expression of UBE2T and its relation with clinicopathological features and prognosis of OC patients were explored by analyzing online data and experimental data. Besides, the functions of UBE2T in OC cells were investigated by in vitro experiments, including CCK-8, plate clone formation, and Transwell assays. Finally, the underlying mechanism of UBE2T associated functions in OC was analyzed. The results indicated that UBE2T was significantly upregulated in OC tissues. UBE2T expression was notably correlated with clinical features, such as primary T stage and FIGO stage in OC patients. UBE2T, acting as an independent prognostic indicator, was inversely associated with the prognosis of OC patients. The UBE2T knockdown remarkably suppressed the growth, proliferation, and invasion of OC cells, indicated by impaired cell viability, fewer cell clones, and invasive cells. Mechanistically, UBE2T depletion suppressed epithelial-mesenchymal transition (EMT), which was caused by autophagy activation due to inactivation of AKT/mTOR in OC cells with UBE2T knockdown. Collectively, our findings confirm that UBE2T upregulation predicts poor prognosis and promotes malignant progression in OC. UBE2T upregulation suppresses autophagy and subsequently boosts EMT via activating the AKT/mTOR axis, which accounts for the underlying mechanism of oncogenic roles of UBE2T in OC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, P.R. China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hongyan Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuzhen Xiao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Lei Wang
- Nhc Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China,CONTACT Xiaomeng Xia Department of Gynecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, P.R. China
| |
Collapse
|
28
|
Modulating the Ubiquitin–Proteasome System: A Therapeutic Strategy for Autoimmune Diseases. Cells 2022; 11:cells11071093. [PMID: 35406655 PMCID: PMC8997991 DOI: 10.3390/cells11071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease associated with the central nervous system (CNS). Autoimmunity is caused by an abnormal immune response to self-antigens, which results in chronic inflammation and tissue death. Ubiquitination is a post-translational modification in which ubiquitin molecules are attached to proteins by ubiquitinating enzymes, and then the modified proteins are degraded by the proteasome system. In addition to regulating proteasomal degradation of proteins, ubiquitination also regulates other cellular functions that are independent of proteasomal degradation. It plays a vital role in intracellular protein turnover and immune signaling and responses. The ubiquitin–proteasome system (UPS) is primarily responsible for the nonlysosomal proteolysis of intracellular proteins. The 26S proteasome is a multicatalytic adenosine-triphosphate-dependent protease that recognizes ubiquitin covalently attached to particular proteins and targets them for degradation. Damaged, oxidized, or misfolded proteins, as well as regulatory proteins that govern many essential cellular functions, are removed by this degradation pathway. When this system is affected, cellular homeostasis is altered, resulting in the induction of a range of diseases. This review discusses the biochemistry and molecular biology of the UPS, including its role in the development of MS and proteinopathies. Potential therapies and targets involving the UPS are also addressed.
Collapse
|
29
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
30
|
Hao M, Dou Z, Xu L, Shao Z, Sun H, Li Z. RNA Sequencing Analysis of Gene Expression by Electroacupuncture in Guinea Pig Gallstone Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3793946. [PMID: 35035504 PMCID: PMC8759925 DOI: 10.1155/2022/3793946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Clinical studies have shown that electroacupuncture (EA) promotes gallbladder motility and alleviates gallstone. However, the mechanism underlying the effects of EA on gallstone is poorly understood. In this study, the mRNA transcriptome analysis was used to study the possible therapeutic targets of EA. METHODS Hartley SPF guinea pigs were employed for the gallstone models. Illumina NovaSeq 6000 platform was used for the RNA sequencing of guinea pig gallbladders in the normal group (Normal), gallstone model group (Model), and EA-treated group (EA). Differently expressed genes (DEGs) were examined separately in Model vs. Normal and EA vs. Model. DEGs reversed by EA were selected by comparing the DEGs of Model vs. Normal and EA vs. Model. Biological functions were enriched by gene ontology (GO) analysis. The protein-protein interaction (PPI) network was analyzed. RESULTS After 2 weeks of EA, 257 DEGs in Model vs. Normal and 1704 DEGs in EA vs. Model were identified. 94 DEGs reversed by EA were identified among these DEGs, including 28 reversed upregulated DEGs and 66 reversed downregulated DEGs. By PPI network analysis, 10 hub genes were found by Cytohubba plugin of Cytoscape. Quantitative real-time PCR (qRT-PCR) verified the changes. CONCLUSION We identified a few GOs and genes that might play key roles in the treatment of gallstone. This study may help understand the therapeutic mechanism of EA for gallstone.
Collapse
Affiliation(s)
- Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhiqiang Dou
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongchen Shao
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Sun
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
31
|
Li L, Li Q. miR-543 impairs breast cancer cell phenotypes by targeting and suppressing ubiquitin-conjugating enzyme E2T (UBE2T). Bioengineered 2021; 12:12394-12406. [PMID: 34787051 PMCID: PMC8810138 DOI: 10.1080/21655979.2021.2005217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Breast cancer, with high morbidity worldwide, is a threat to the life of women. MiR-543 was identified as playing an active part in the development of breast cancer involving multiple molecules. The goal of this study was to explore the molecular mechanisms of the involvement of miR-543 in the development of breast cancer. Quantitative real-time PCR (qRT-PCR) or Western blotting was used to detect mRNA or protein expression. Cell counting kit-8 (CCK-8), and the 5-bromo-2ʹ-deoxyuridine (BrdU), wound healing, and Transwell assays were the main experimental procedures. Furthermore, subcutaneous tumor formation experiments were conducted to detect the function of miR-543 in breast cancer development in vivo. The match of miR-543 and ubiquitin-conjugating enzyme E2T (UBE2T) was detected through a dual-luciferase reporter experiment and RNA pull-down assay. Based on these results, miR-543 exhibited reduced expression in breast cancer tissues and cell lines, whereas UBE2T exhibited high levels. Furthermore, miR-543 directly targeted UBE2T, and a negative correlation between miR-543 and UBE2T was also observed in breast cancer tissues. Moreover, miR-543 overexpression led to inhibition of viability, proliferation, migration, and invasion of breast cancer. Furthermore, miR-543 overexpression undermined the UBE2T promotional effect by inhibiting ERK/MAPK pathway activity in breast cancer cells. Our study revealed that miR-543 impaired breast cancer progression by targeting UBE2T and downregulating UBE2T expression through the ERK/MAPK pathway, which suggested that miR-543 and UBE2T might serve as promising therapeutic gene targets for breast cancer in clinical application.
Collapse
Affiliation(s)
- Li Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Qing Li
- Department of Oncology, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| |
Collapse
|
32
|
Lioulia E, Mokos P, Panteris E, Dafou D. UBE2T promotes β-catenin nuclear translocation in hepatocellular carcinoma through MAPK/ERK-dependent activation. Mol Oncol 2021; 16:1694-1713. [PMID: 34614271 PMCID: PMC9019890 DOI: 10.1002/1878-0261.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ubiquitin‐conjugating enzyme E2T (UBE2T) has been implicated in many types of cancer including hepatocellular carcinoma (HCC). Epithelial–mesenchymal transition (EMT) process plays a fundamental role during tumor metastasis and progression. However, the molecular mechanisms underlying EMT in HCC in accordance with UBE2T still remain unknown. In this study, we showed that UBE2T overexpression augmented the oncogenic properties and specifically EMT in HCC cell lines, while its silencing attenuated them. UBE2T affected the activation of EMT‐associated signaling pathways: MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin. In addition, we revealed that the epithelial protein complex of E‐cadherin/β‐catenin, a vital regulator of signal transduction in tumor initiation and progression, was totally disrupted at the cell membrane. In particular, we observed that UBE2T overexpression led to E‐cadherin loss accompanied by a simultaneous elevation of both cytoplasmic and nuclear β‐catenin, while its silencing resulted in a strong E‐cadherin turnover at the cell membrane. Interestingly, chemical inhibition of the MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin signaling pathways demonstrated that the nuclear translocation of β‐catenin and subsequent EMT was enhanced mainly by MAPK/ERK. Collectively, our findings demonstrate the UBE2T/MAPK‐ERK/β‐catenin axis as a critical regulator of cell state transition and EMT in HCC.
Collapse
Affiliation(s)
- Elisavet Lioulia
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Panagiotis Mokos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
33
|
Peris-Moreno D, Malige M, Claustre A, Armani A, Coudy-Gandilhon C, Deval C, Béchet D, Fafournoux P, Sandri M, Combaret L, Taillandier D, Polge C. UBE2L3, a Partner of MuRF1/TRIM63, Is Involved in the Degradation of Myofibrillar Actin and Myosin. Cells 2021; 10:1974. [PMID: 34440743 PMCID: PMC8392593 DOI: 10.3390/cells10081974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1-UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dulce Peris-Moreno
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Mélodie Malige
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Agnès Claustre
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Andrea Armani
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padua, 35100 Padova, Italy; (A.A.); (M.S.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Christiane Deval
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Daniel Béchet
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Pierre Fafournoux
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Marco Sandri
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padua, 35100 Padova, Italy; (A.A.); (M.S.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, F-63000 Clermont-Ferrand, France; (D.P.-M.); (M.M.); (A.C.); (C.C.-G.); (C.D.); (D.B.); (P.F.); (L.C.); (D.T.)
| |
Collapse
|
34
|
Wang X, Liu Y, Leng X, Cao K, Sun W, Zhu J, Ma J. UBE2T Contributes to the Prognosis of Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:632531. [PMID: 34257599 PMCID: PMC8262217 DOI: 10.3389/pore.2021.632531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Background: The ubiquitin-conjugating enzyme E2 T (UBE2T) has been shown to contribute to several types of cancer. However, no publication has reported its implication in esophageal squamous cell cancer (ESCC). Methods: We explored several public databases, including The Cancer Genome Atlas (TCGA), Oncomine, and gene expression Omnibus (GEO). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA) were adopted to explore involved signaling pathways. We used R software to develop prognostic gene signatures with the LASSO and stepwise Cox regression analysis, separately. Immunohistochemistry staining was performed to detect UBE2T in 90 ESCC patients, followed by survival analysis. We also used an R package pRRophetic to evaluate chemotherapy sensitivity for the TCGA–ESCC cohort. Results: We found significantly increased UBE2T transcript levels and DNA copy numbers in ESCC tissues. UBE2T was associated with the p53 signaling pathway, cell cycle, Fanconi anemia pathway, and DNA replication, as indicated by Go, KEGG pathway enrichment analysis. These pathways were also upregulated in ESCC. The prognostic signatures with UBE2T-associated genes could stratify ESCC patients into low- and high-risk groups with significantly different overall survival in the TCGA–ESCC cohort. We also validated the association of UBE2T with unfavorable survival in 90 ESCC patients recruited for this study. Moreover, we found that the low-risk group was significantly more sensitive to chemotherapy than the high-risk group. Conclusions: UBE2T is involved in the development of ESCC, and gene signatures derived from UBE2T-associated genes are predictive of prognosis in ESCC.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Leng
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kui Cao
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wentao Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
35
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
36
|
TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:5585-5606. [PMID: 33591950 PMCID: PMC7950261 DOI: 10.18632/aging.202487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane protein (TMEM) is a kind of integral membrane protein that spans biological membranes. The functions of most members of the TMEM family are unknown. Here, we conducted bioinformatic analysis and biological validation to investigate the role of TMEM106C in HCC. First, GEPIA and OncomineTM were used to analyze TMEM106C expression, which was verified by real-time PCR and western blot analyses. Then, the biological functions of TMEM106C were explored by CCK8 and transwell assays. The prognostic value of TMEM106C was analyzed by UALCAN. LinkedOmics was used to analyze TMEM106C pathways generated by Gene Ontology. A protein-protein interaction network (PPI) was constructed by GeneMANIA. We demonstrated that TMEM106C was overexpressed in HCC and that inhibition of TMEM106C significantly suppressed the proliferation and metastasis of HCC through targeting CENPM and DLC-1. Upregulation of TMEM106C was closely correlated with sex, tumor stage, tumor grade and prognosis. Overexpression of TMEM106C was linked to functional networks involving organelle fission and cell cycle signaling pathways through the regulation of CDK kinases, E2F1 transcription factors and miRNAs. Our data demonstrated that TMEM106C contributes to malignant characteristics and poor prognosis in HCC, which may serve as a prognostic biomarker and potential therapeutic target.
Collapse
|
37
|
Zhou ZX, Ren Z, Yan BJ, Qu SL, Tang ZH, Wei DH, Liu LS, Fu MG, Jiang ZS. The Role of Ubiquitin E3 Ligase in Atherosclerosis. Curr Med Chem 2021; 28:152-168. [PMID: 32141415 DOI: 10.2174/0929867327666200306124418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Min-Gui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, United States
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
38
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
39
|
Zou R, Xu H, Li F, Wang S, Zhu L. Increased Expression of UBE2T Predicting Poor Survival of Epithelial Ovarian Cancer: Based on Comprehensive Analysis of UBE2s, Clinical Samples, and the GEO Database. DNA Cell Biol 2020; 40:36-60. [PMID: 33180631 DOI: 10.1089/dna.2020.5823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes E2 (UBE2) have been reported in the microenvironment of various malignant tumors, but their correlation with ovarian cancer (OC) remains elusive. This study aimed to systematically analyze the expression patterns, prognostic value, genetic variation, and biological functions of 12 members of the UBE2 gene family in OC through the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases, respectively. We found that the mRNA levels of UBE2C, UBE2N, UBE2S, and UBE2T were significantly upregulated in OC compared with those in normal ovarian tissue. In patients with serous ovarian cancer (SOC), UBE2A, UBE2B, UBE2C, UBE2G, UBE2R2, and UBE2T upregulation were associated with poor overall survival. Moreover, UBE2A, UBE2N, UBE2R2, and UBE2T upregulation and UBE2G downregulation were associated with poor progression-free survival. UBE2T exhibited a strong correlation with OC and was thus further examined. We found that UBE2T has a high diagnostic accuracy (area under the receiver operating characteristic curve = 0.969) in epithelial ovarian cancer (EOC). Immunohistochemical assays and the Gene Expression Omnibus (GEO) database revealed that UBE2T was significantly upregulated in EOC compared with that in borderline tumors, benign tumors, and normal ovarian tissues, and its high expression was associated with poor prognosis. The Cox model showed that UBE2T upregulation was an independent risk factor affecting the prognosis of EOC and SOC. Furthermore, UBE2T was associated with specific immune cells and was mainly involved in cell cycle-related events. Genomic analysis showed that TP53 and TTN mutations were associated with UBE2T expression. Gene copy number amplification and hypomethylation may be responsible for UBE2T upregulation in OC. In conclusion, UBE2 family members may play a role in the development of OC. Specifically, UBE2T could serve as a new prognostic marker and therapeutic target for this disease. (IRB Approval No. 2020PS533K).
Collapse
Affiliation(s)
- Ruoyao Zou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Haoya Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| | - Feifei Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengke Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Wu X, Liu G, Liu R, He J, Wang G, Zhang H, Liu T, Bai J, Cheng N, Qiu J. Expression of ubiquitin-conjugating enzyme E2T in colorectal cancers and clinical implications. Oncol Lett 2020; 20:275. [PMID: 33014154 PMCID: PMC7520753 DOI: 10.3892/ol.2020.12138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Ubiquitin-conjugating enzyme E2T (UBE2T) plays a significant role in carcinogenesis. Previous studies have demonstrated that UBE2T promotes the development and progression of numerous types of cancer. However, the association between UBE2T expression and colorectal cancer (CRC) remains unclear. In the present study, UBE2T protein expression was examined in the tissues of patients with CRC via immunohistochemistry. In addition, UBE2T expression data and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA). In the clinical samples, the associations between UBE2T expression and clinicopathological factors were evaluated by the χ2 or Fisher's exact tests. In TCGA data, associations between UBE2T expression and clinical characteristics were evaluated using a logistic regression model. Overall survival was analyzed using Kaplan-Meier and Cox regression analyses. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting assays were used to examine UBE2T expression in normal and CRC cell lines. Gene set enrichment analysis (GSEA) was performed on the dataset from TCGA. UBE2T protein was highly expressed in the cytoplasm of tumor cells in 29/50 clinical samples, whereas in the adjacent normal tissues, it was only highly expressed in 2/50 samples. Furthermore, UBE2T expression was associated with the N classification (P<0.001), clinical TNM stage (P<0.001) and histological grade of tumors (P=0.010). Survival analysis showed an association between high UBE2T expression and poor survival rate in patients with CRC (P=0.002). Cox regression analysis also revealed that UBE2T expression was an independent prognostic factor for these patients (P=0.006). RT-qPCR and western blotting showed that UBE2T was expressed in CRC cell lines at higher levels than that in a normal colon cell line. Analysis of TCGA data revealed that UBE2T was highly expressed in tumor samples compared with normal samples, but was not associated with prognosis. GSEA showed that high expression of UBE2T was associated with the Kyoto Encyclopedia of Genes and Genomes pathways ‘cell cycle’, ‘oxidative phosphorylation’, ‘DNA replication’, ‘p53 signaling pathway’, ‘ubiquitin mediated proteolysis’ and ‘pentose phosphate pathway’. These results indicate that UBE2T may play an important role in the progression of CRC and serve as a potential prognostic factor during the treatment of cancer.
Collapse
Affiliation(s)
- Xiangtian Wu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Liu
- Department of Emergency Surgery, East Hospital, Tongji University, Shanghai 200120, P.R. China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jing He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Guorong Wang
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Haibao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Jirong Bai
- Department of Pathology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ning Cheng
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Qiu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
41
|
Yi SA, Lee DH, Kim GW, Ryu HW, Park JW, Lee J, Han J, Park JH, Oh H, Lee J, Choi J, Kim HS, Kang HG, Kim DH, Chun KH, You JS, Han JW, Kwon SH. HPV-mediated nuclear export of HP1γ drives cervical tumorigenesis by downregulation of p53. Cell Death Differ 2020; 27:2537-2551. [PMID: 32203172 PMCID: PMC7429875 DOI: 10.1038/s41418-020-0520-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
E6 oncoprotein derived from high-risk human papillomavirus (HPV) drives the development of cervical cancer through p53 degradation. Because cervical cancer therapies to inactivate HPV or E6 protein are not available, alternative strategies are required. Here, we show that HPV-mediated nuclear export of human heterochromatin protein 1γ (HP1γ) reduces the stability of p53 through UBE2L3-mediated p53 polyubiquitination during cervical cancer progression. In general, HP1 plays a key role in heterochromatin formation and transcription in the nucleus. However, our immunostaining data showed that the majority of HP1γ is localized in the cytoplasm in HPV-mediated cervical cancer. We found that HPV E6 protein drives unusual nuclear export of HP1γ through the interaction between the NES sequence of HP1γ and exportin-1. The mutation of the NES sequence in HP1γ led to nuclear retention of HP1γ and reduced cervical cancer cell growth and tumor generation. We further discovered that HP1γ directly suppresses the expression of UBE2L3 which drives E6-mediated proteasomal degradation of p53 in cervical cancer. Downregulation of UBE2L3 by overexpression of HP1γ suppressed UBE2L3-dependent p53 degradation-promoting apoptosis of cervical cancer cells. Our findings propose a useful strategy to overcome p53 degradation in cervical cancer through the blockage of nuclear export of HP1γ.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jong Woo Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihoon Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee Hun Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwamok Oh
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jieun Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
42
|
Zhu X, Li T, Niu X, Chen L, Ge C. Identification of UBE2T as an independent prognostic biomarker for gallbladder cancer. Oncol Lett 2020; 20:44. [PMID: 32802166 PMCID: PMC7412740 DOI: 10.3892/ol.2020.11903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignant tumor, with unfavorable patient outcomes. The present study aimed to identify potential diagnostic or prognostic biomarkers for gallbladder cancer. To do so, differentially expressed genes in the gallbladder walls and tumor tissues of patients with gallbladder cancer were analyzed via microarray. Furthermore, a protein-protein interaction network was constructed and genes with a degree score >10 were selected as hub genes. As ubiquitin conjugating enzyme E2T (UBE2T) was considered to be a hub gene, its expression was assessed via reverse transcription-quantitative (RT-q)PCR and immunohistochemistry (IHC). In addition, the association between UBE2T expression and the clinicopathological characteristics of patients with gallbladder cancer was analyzed using the χ2 test. Furthermore, all patients were divided into high- and low groups based on UBE2T expression level and overall survival analysis was performed. Univariate and multivariate Cox regression analyses were performed to determine whether UBE2T may serve as an independent risk factor for gallbladder cancer. The results demonstrated that UBE2T expression was upregulated in the gallbladder walls and tumor tissues of patients with gallbladder cancer. Furthermore, UBE2T expression level was confirmed to be upregulated following RT-qPCR, and results from IHC demonstrated that UBE2T was predominantly expressed in the cytoplasm of gallbladder cancer cells. In addition, high UBE2T expression level was associated with clinical stage, T classification, N classification and M classification. The results from Univariate and multivariate analyses indicated that UBE2T expression level may be considered as an independent risk factor for gallbladder cancer. Taken together, the findings from this study suggested that high UBE2T expression level may contribute to the poor prognosis of patients with gallbladder cancer, and that UBE2T may act as an independent prognostic biomarker for these patients.
Collapse
Affiliation(s)
- Xuan Zhu
- Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of General Surgery, Anshan Hospital, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Li
- Department of General Surgery, Fukuang General Hospital, Fushun, Liaoning 113008, P.R. China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunlin Ge
- Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
43
|
Chen X, Zhang S, Liu C, Li G, Lu S, Wang Y, Zhang X, Huang D, Qiu Y, Liu Y. UBE2O Promotes Progression and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:6191-6202. [PMID: 32636643 PMCID: PMC7334014 DOI: 10.2147/ott.s253861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background UBE2O, as a member of the ubiquitin-conjugating enzyme family, is abnormally expressed and exhibits abnormal functions in human malignancies. However, the function of UBE2O in head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our study aims to investigate the role of UBE2O in HNSCC progression and the underlying mechanisms. Methods The expression of UBE2O in HNSCC patients was investigated with data from the Cancer Genome Atlas (TCGA) and from a separate primary tumor cohort. The function of UBE2O in HNSCC cells was studied by cell viability assay, colony formation assay, wound healing assay, and cell migration and invasion chamber assay. The effect of UBE2O on tumor growth in vivo was determined in a subcutaneous xenograft model of HNSCC. Results TCGA data showed that UBE2O mRNA expression was dramatically increased in HNSCC tissues and that patients with high expression of UBE2O transcripts had a worse survival prognosis than patients with low expression of UBE2O transcripts. Gain-of-function and loss-of-function analyses revealed that oncogenic UBE2O enhanced the proliferation, migration and invasion of HNSCC cells in vitro. Further, mechanistic analysis revealed that UBE2O induced the epithelial-mesenchymal transition (EMT) phenotype and also potentiated TGF-β1-induced EMT, and thus leading to an enhanced capacity of migration and invasion in HNSCC. Finally, xenograft models showed that UBE2O knockout obviously inhibited the occurrence of EMT, angiogenesis and tumor growth in HNSCC in vivo. Conclusion Our study indicates that UBE2O acts as an oncogene to promote the malignant progression and EMT of HNSCC.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shuiting Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Shanhong Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan 410008, People's Republic of China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
44
|
Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Biomolecules 2020; 10:E796. [PMID: 32455657 PMCID: PMC7278180 DOI: 10.3390/biom10050796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a large (~2.5 MDa) protein complex consisting of at least 33 different subunits and many other components, which form the ubiquitin proteasomal system (UPS), an ATP-dependent protein degradation system in the cell. UPS serves as an essential component of the cellular protein surveillance machinery, and its dysfunction leads to cancer, neurodegenerative and immunological disorders. Importantly, the functions and regulations of proteins are governed by the combination of ordered regions, intrinsically disordered protein regions (IDPRs) and molecular recognition features (MoRFs). The structure-function relationships of UPS components have not been identified completely; therefore, in this study, we have carried out the functional intrinsic disorder and MoRF analysis for potential neurodegenerative disease and anti-cancer targets of this pathway. Our report represents the presence of significant intrinsic disorder and disorder-based binding regions in several UPS proteins, such as extraproteasomal polyubiquitin receptors (UBQLN1 and UBQLN2), proteasome-associated polyubiquitin receptors (ADRM1 and PSMD4), deubiquitinating enzymes (DUBs) (ATXN3 and USP14), and ubiquitinating enzymes (E2 (UBE2R2) and E3 (STUB1) enzyme). We believe this study will have implications for the conformation-specific roles of different regions of these proteins. This will lead to a better understanding of the molecular basis of UPS-associated diseases.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Shivani K. Kapuganti
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Cientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; (K.G.); (P.K.); (S.K.K.)
| |
Collapse
|
45
|
Chaugule VK, Arkinson C, Rennie ML, Kämäräinen O, Toth R, Walden H. Allosteric mechanism for site-specific ubiquitination of FANCD2. Nat Chem Biol 2019; 16:291-301. [PMID: 31873223 PMCID: PMC7035956 DOI: 10.1038/s41589-019-0426-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/05/2019] [Indexed: 01/31/2023]
Abstract
DNA damage repair is implemented by proteins that are coordinated by specialised molecular signals. One such signal in the Fanconi Anemia (FA) DNA-interstrand crosslink repair pathway is the site-specific monoubiquitination of FANCD2 and FANCI. The signal is mediated by a multi-protein FA core complex (FA-CC) however, the mechanics for precise ubiquitination remain elusive. We show that FANCL, the RING-bearing module in FA-CC, allosterically activates its cognate E2 Ube2T to drive site-specific FANCD2 ubiquitination. Unlike typical RING E3 ligases, FANCL catalyses ubiquitination by rewiring Ube2T’s intra-residue network to influence the active site. Consequently, a basic triad unique to Ube2T engages a structured acidic patch near the target lysine on FANCD2. This three-dimensional complementarity, between the E2 active site and substrate surface, induced by FANCL is central to site-specific monoubiquitination in the FA pathway. Furthermore, the allosteric network of Ube2T can be engineered to enhance FANCL catalysed FANCD2-FANCI di-monoubiquitination without compromising site-specificity.
Collapse
Affiliation(s)
- Viduth K Chaugule
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Connor Arkinson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Martin L Rennie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Outi Kämäräinen
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
46
|
Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G, Brecht L, Veenendaal T, Polajnar M, Bluemke A, Ehrmann M, Klumperman J, Jäättelä M, Behrends C, Meyer H. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 2019; 20:e48014. [PMID: 31432621 PMCID: PMC6776906 DOI: 10.15252/embr.201948014] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.
Collapse
Affiliation(s)
- Lisa Koerver
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | | | - Bin Liu
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Bojana Kravic
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Giulia Rota
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Lukas Brecht
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mira Polajnar
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Anika Bluemke
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Ehrmann
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marja Jäättelä
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Hemmo Meyer
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
47
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Hao P, Kang B, Li Y, Hao W, Ma F. UBE2T promotes proliferation and regulates PI3K/Akt signaling in renal cell carcinoma. Mol Med Rep 2019; 20:1212-1220. [PMID: 31173226 PMCID: PMC6625406 DOI: 10.3892/mmr.2019.10322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor globally. The overall survival of patients with RCC is poor; one important factor is tumor heterogeneity. Ubiquitin-conjugating enzyme E2T (UBE2T) has been reported to act as an oncogene in various types of cancer; however, its role in RCC has yet to be investigated. In the present study, UBE2T was demonstrated via reverse transcription-quantitative PCR analysis to be significantly upregulated in RCC samples and cell lines compared with in normal tissue and cells. Additionally, UBE2T expression was significantly associated with late tumor stage and high grade in patients with RCC, and patients with high UBE2T expression exhibited poor prognosis compared with patients with low expression. Following knockdown of UBE2T in 786-O cells using RNA interference technology, the proliferation and colony formation of cells were inhibited as determined by an MTT assay and crystal violet staining, respectively; however, the migration and invasion of 786-O cells were not affected, as determined by wound-healing assay and Transwell assays, respectively. Xenograft RCC tumor growth in vivo was also significantly suppressed. The expression levels of two mesenchymal cell markers, N-cadherin and vimentin, were reduced following UBE2T knockdown, whereas E-cadherin and fibronectin levels were increased as determined by western blotting, indicating that epithelial-mesenchymal transition was suppressed. In addition, the phosphorylation levels of PI3K, Akt and mTOR were notably decreased following UBE2T knockdown, but were increased when UBE2T was overexpressed. Wortmannin, an Akt inhibitor, reversed the UBE2T overexpression-induced increase in the phosphorylation of PI3K, Akt and mTOR. Similarly, the UBE2T overexpression-induced promotion of 786-O cell proliferation was also attenuated by wortmannin. In conclusion, UBE2T promoted the proliferation of RCC cells by regulating PI3K/Akt signaling, suggesting it may be a novel target for the treatment of patients with RCC.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Department of Central Sterile Supply, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yapeng Li
- Department of Medical Record, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Wenqi Hao
- Distinguished Physician Class, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
49
|
Abstract
In higher eukaryotes, DNA damage repair response pathways are orchestrated by several molecular signals including ubiquitination. In particular the repair of DNA interstrand crosslinks, toxic to transcription and replication processes, involve the activation of the Fanconi anemia repair pathway. At the heart of this pathway lies the monoubiquitination of FANCD2 and FANCI proteins, which triggers the recruitment of DNA repair factors. A major road block in our understanding of this fundamental repair pathway arises from the challenge with generating sufficient quantities of site-specifically monoubiquitinated FANCD2 and FANCI proteins to enable mechanistic and molecular studies. Current in vitro methods rely on the purification of a large (~0.8MDa), multiprotein E3 complex that can only partially monoubiquitinate a FANCD2-FANCI-DNA complex. In this chapter, we describe detailed protocols for the preparation of homogeneously and natively monoubiquitinated FANCD2 and FANCI proteins in isolation. The method relies on the use of a minimal E3 module and an engineered E2 variant that together drive site-specific ubiquitination of the isolated substrates, without the requirement of DNA cofactors. Using the enzymatic approach, we also demonstrate how added functionalities such as a fluorescently labeled ubiquitin can be conjugated on the FANCD2 and FANCI substrates, thus enabling multiple downstream applications.
Collapse
|
50
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|