Hernandez A, Burdett I, Work TS. Protein synthesis by brain-cortes mitochondria. Characterization of a 55S mitochondrial ribosome as the functional unit in protein synthesis by cortex mitochondria and its distinction from a contaminant cytoplasmic protein-synthesizing system.
Biochem J 1971;
124:327-36. [PMID:
5158500 PMCID:
PMC1177147 DOI:
10.1042/bj1240327]
[Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Homogenates of rat brain cortex were fractionated by conventional methods of velocity sedimentation and separated into a microsomal and a washed mitochondrial fraction. By electron microscopy the mitochondrial fraction was shown to be rich in synaptosomes. The mitochondria-synaptosome fraction synthesized protein in vitro by a route that was partially inhibited by cycloheximide and partly by chloramphenicol. The relative effectiveness of the two inhibitors varied greatly with the medium used. In the mitochondria-synaptosome fraction active 80S cytoplasmic ribosomes and active 55S mitochondrial ribosomes were detected; these were also seen in the electron microscope. Mild osmotic shock of the mitochondria-synaptosome fraction followed by velocity sedimentation in sucrose-EDTA allowed isolation of a mitochondrial fraction free of synaptosomes. Protein synthesis in this fraction was entirely inhibited by chloramphenicol, but was completely resistant to cycloheximide both in a medium promoting oxidative phosphorylation and in ATP-generating medium. Ouabain had no inhibitory effect on protein synthesis in a purified mitochondrial preparation. It is concluded that brain-cortex mitochondria synthesize protein entirely on 55S mitochondrial ribosomes.
Collapse