1
|
Waidmann O, Pleli T, Weigert A, Imelmann E, Kakoschky B, Schmithals C, Döring C, Frank M, Longerich T, Köberle V, Hansmann ML, Brüne B, Zeuzem S, Piiper A, Dikic I. Tax1BP1 limits hepatic inflammation and reduces experimental hepatocarcinogenesis. Sci Rep 2020; 10:16264. [PMID: 33004985 PMCID: PMC7530720 DOI: 10.1038/s41598-020-73387-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa beta (NFκB) signaling pathway plays an important role in liver homeostasis and cancer development. Tax1-binding protein 1 (Tax1BP1) is a regulator of the NFκB signaling pathway, but its role in the liver and hepatocellular carcinoma (HCC) is presently unknown. Here we investigated the role of Tax1BP1 in liver cells and murine models of HCC and liver fibrosis. We applied the diethylnitrosamine (DEN) model of experimental hepatocarcinogenesis in Tax1BP1+/+ and Tax1BP1-/- mice. The amount and subsets of non-parenchymal liver cells in in Tax1BP1+/+ and Tax1BP1-/- mice were determined and activation of NFκB and stress induced signaling pathways were assessed. Differential expression of mRNA and miRNA was determined. Tax1BP1-/- mice showed increased numbers of inflammatory cells in the liver. Furthermore, a sustained activation of the NFκB signaling pathway was found in hepatocytes as well as increased transcription of proinflammatory cytokines in isolated Kupffer cells from Tax1BP1-/- mice. Several differentially expressed mRNAs and miRNAs in livers of Tax1BP1-/- mice were found, which are regulators of inflammation or are involved in cancer development or progression. Furthermore, Tax1BP1-/- mice developed more HCCs than their Tax1BP1+/+ littermates. We conclude that Tax1BP1 protects from liver cancer development by limiting proinflammatory signaling.
Collapse
Affiliation(s)
- Oliver Waidmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Esther Imelmann
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bianca Kakoschky
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christian Schmithals
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Claudia Döring
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Frank
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Longerich
- Sektion Translationale Gastrointestinale Pathologie, Institut für Pathologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Verena Köberle
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Senckenbergsches Institut für Pathologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institut für Biochemie 1, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stefan Zeuzem
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie Und Hepatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ivan Dikic
- Institut für Biochemie 2, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| |
Collapse
|
2
|
Yuan Y, Fan D, Zhu S, Yang J, Chen J. Identification and characterization of host cell proteins interacting with Scylla serrata reovirus non-structural protein p35. Virus Genes 2016; 53:317-322. [PMID: 27943061 DOI: 10.1007/s11262-016-1418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 12/01/2022]
Abstract
We have previously shown that non-structural protein p35, encoded by Scylla serrata reovirus (SsRV) S10, may act as a viroporin. To characterize the role of p35 protein in the modulation of cellular function, a yeast two-hybrid system was used to screen a cDNA library derived from S. serrata to find its interacting partner. Protein interactions were confirmed in vitro by GST pull-down. Full cDNAs of p35 interactors were cloned by the rapid amplification of cDNA ends. After two-hybrid library screening, we isolated partial cDNAs encoding hemocyanin, cryptocyanin, and TAX1BP1. Interaction of p35 with each of hemocyanin, cryptocyanin, and TAX1BP1 was confirmed by GST pull-down. The full-length cDNA fragments of hemocyanin, cryptocyanin, and TAX1BP1 were 2287, 2422, and 3437 bp, respectively, and they encoded three putative proteins with molecular masses of ~76.9, ~79.2, and ~107.2 kDa, respectively. This study casts new light on the function and physiological significance of p35 during the SsRV replication cycle.
Collapse
Affiliation(s)
- Yangyang Yuan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo, Zhejiang Province, 315100, People's Republic of China
| | - Dongyang Fan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo, Zhejiang Province, 315100, People's Republic of China
| | - Sidong Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo, Zhejiang Province, 315100, People's Republic of China
| | - Jifang Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo, Zhejiang Province, 315100, People's Republic of China
| | - Jigang Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo, Zhejiang Province, 315100, People's Republic of China.
| |
Collapse
|
3
|
Linck L, Binder J, Haynl C, Enz R. Endocytosis of GABAC
receptors depends on subunit composition and is regulated by protein kinase C-ζ and protein phosphatase 1. J Neurochem 2015; 134:233-46. [DOI: 10.1111/jnc.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lisa Linck
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Jasmin Binder
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian Haynl
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Ralf Enz
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
4
|
V’yunova TV, Andreeva LA, Shevchenko KV, Shevchenko VP, Myasoedov NF. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Yang Y, Wang G, Huang X, Du Z. Crystallographic and modelling studies suggest that the SKICH domains from different protein families share a common Ig-like fold but harbour substantial structural variations. J Biomol Struct Dyn 2014; 33:1385-98. [PMID: 25187058 DOI: 10.1080/07391102.2014.951688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TAX1BP1 is a pleiotropic multi-domain protein involved in many important biological processes such as signal transduction, cell growth and apoptosis, transcriptional coactivation, membrane trafficking, neurotransmission and autophagy. The N-terminus of TAX1BP1 contains a SKICH domain implicated in autophagy. SKICH domains are also present in four other proteins including NDP52, CALCOCO1, SKIP and PIPP. The SKICH domains of SKIP and PIPP mediate plasma membrane localisation. The functions of the SKICH domains of NDP52 and CALCOCO1 are not known. Here we report the crystal structure of the TAX1BP1 SKICH domain, which has an Ig-like fold similar to the NDP52 SKICH domain. Extensive pairwise and clustered aromatic π-stacking interactions are present in the TAX1BP1 SKICH domain. The aromatic residues mediating these interactions can be classified into four groups with varying degrees of conservation among different protein families. The interactions mediated by highly conserved residues are found in the interior and one outward face of the Ig-like β-barrel, representing common structural features of the SKICH domains. Three TAX1BP1-specific pairwise interactions locate in the loop regions, each augmented by a proline-aromatic interaction. The three proline-aromatic clusters are linked together by more generic hydrophobic interactions, forming a unique hydrophobic surface at one end of the TAX1BP1 SKICH domain. The structures and homologous models of SKICH domains from different proteins reveal substantial differences in electrostatic surface properties of the domains. Together with existing biochemical data, results from the structural study suggest that an intact SKICH domain is required for the autophagy function of TAX1BP1.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale 62901 , IL , USA
| | | | | | | |
Collapse
|
6
|
Yang Y, Wang G, Huang X, Du Z. Expression, purification and crystallization of the SKICH domain of human TAX1BP1. Acta Crystallogr F Struct Biol Commun 2014; 70:619-23. [PMID: 24817723 PMCID: PMC4014332 DOI: 10.1107/s2053230x14006396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/22/2014] [Indexed: 01/12/2023] Open
Abstract
TAX1BP1 is a highly conserved, pleiotropic protein that plays many essential functions in human cells, including negative regulation of inflammatory and antimicrobial responses mediated by NF-κB and IRF3 signaling, inhibition of apoptosis, transcriptional coactivation and autophagy etc. TAX1BP1 contains a SKICH domain at the N-terminus, three coiled-coil domains in the middle and two ubiquitin-binding zinc-finger motifs at the C-terminus. The SKICH domain and the linker sequence between the SKICH domain and the coiled-coil region mediate interaction with ubiquitin-like proteins of the LC3/GABARAP family, which are autophagosome markers. For structure determination of the SKICH domain of TAX1BP1, a protein construct (amino acids 15-148) corresponding to the SKICH domain plus the linker region was expressed, purified and crystallized. A native diffraction data set has been collected to 1.9 Å resolution. A molecular-replacement solution has been found by using the structure of the SKICH domain of NDP52, a paralog of TAX1BP1.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Guan Wang
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Xiaolan Huang
- Department of Computer Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Ceregido MA, Spínola Amilibia M, Buts L, Rivera-Torres J, Garcia-Pino A, Bravo J, van Nuland NAJ. The structure of TAX1BP1 UBZ1+2 provides insight into target specificity and adaptability. J Mol Biol 2013; 426:674-90. [PMID: 24239949 DOI: 10.1016/j.jmb.2013.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
TAX1BP1 is a novel ubiquitin-binding adaptor protein involved in the negative regulation of the NF-kappaB transcription factor, which is a key player in inflammatory responses, immunity and tumorigenesis. TAX1BP1 recruits A20 to the ubiquitinated signaling proteins TRAF6 and RIP1, leading to their A20-mediated deubiquitination and the disruption of IL-1-induced and TNF-induced NF-kappaB signaling, respectively. The two zinc fingers localized at its C-terminus function as novel ubiquitin-binding domains (UBZ, ubiquitin-binding zinc finger). Here we present for the first time both the solution and crystal structures of two classical UBZ domains in tandem within the human TAX1BP1. The relative orientation of the two domains is slightly different in the X-ray structure with respect to the NMR structure, indicating some degree of conformational flexibility, which is rationalized by NMR relaxation data. The observed degree of flexibility and stability between the two UBZ domains might have consequences on the recognition mechanism of interacting partners.
Collapse
Affiliation(s)
- M Angeles Ceregido
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain; Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; Molecular Recognition Unit, Department of Structural Biology, VIB, Brussels 1050, Belgium
| | - Mercedes Spínola Amilibia
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas, Valencia 46010, Spain; Departamento de Biología Físico-Química, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid 28040, Spain
| | - Lieven Buts
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; Molecular Recognition Unit, Department of Structural Biology, VIB, Brussels 1050, Belgium
| | - José Rivera-Torres
- Department of Epidemiology, Atherothrombosis and Imaging, Spanish National Cardiovascular Research Center, Madrid 28029, Spain
| | - Abel Garcia-Pino
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; Molecular Recognition Unit, Department of Structural Biology, VIB, Brussels 1050, Belgium
| | - Jerónimo Bravo
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas, Valencia 46010, Spain.
| | - Nico A J van Nuland
- Jean Jeener NMR Centre, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium; Molecular Recognition Unit, Department of Structural Biology, VIB, Brussels 1050, Belgium.
| |
Collapse
|
8
|
Pranski EL, Van Sanford CD, Dalal NV, Orr AL, Karmali D, Cooper DS, Costa N, Heilman CJ, Gearing M, Lah JJ, Levey AI, Betarbet RS. Comparative distribution of protein components of the A20 ubiquitin-editing complex in normal human brain. Neurosci Lett 2012; 520:104-9. [PMID: 22634524 DOI: 10.1016/j.neulet.2012.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/02/2012] [Accepted: 05/14/2012] [Indexed: 11/16/2022]
Abstract
Activation of innate and adaptive immune responses is tightly regulated, as insufficient activation could result in defective clearance of pathogens, while excessive activation might lead to lethal systemic inflammation or autoimmunity. A20 functions as a negative regulator of innate and adaptive immunity by inhibiting NF-κB activation. A20 mediates its inhibitory function in a complex with other proteins including RNF11 and Itch, both E3 ubiquitin ligases and TAX1BP1, an adaptor protein. Since NF-κB has been strongly implicated in various neuronal functions, we predict that its inhibitor, the A20 complex, is also present in the nervous system. In efforts to better understand the role of A20 complex and NF-κB signaling pathway, we determined regional distribution of A20 mRNA as well as protein expression levels and distribution of RNF11, TAX1BP1 and Itch, in different brain regions. The distribution of TRAF6 was also investigated since TRAF6, also an E3 ligase, has an important role in NF-κB signaling pathway. Our investigations, for the first time, describe and demonstrate that the essential components of the A20 ubiquitin-editing complex are present and mainly expressed in neurons. The A20 complex components are also differentially expressed throughout the human brain. This study provides useful information about region specific expression of the A20 complex components that will be invaluable while determining the role of NF-κB signaling pathway in neuronal development and degeneration.
Collapse
Affiliation(s)
- Elaine L Pranski
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci 2011; 36:347-54. [DOI: 10.1016/j.tibs.2011.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 12/18/2022]
|
10
|
Seebahn A, Dinkel H, Mohrlüder J, Hartmann R, Vogel N, Becker CM, Sticht H, Enz R. Structural characterization of intracellular C-terminal domains of group III metabotropic glutamate receptors. FEBS Lett 2011; 585:511-6. [DOI: 10.1016/j.febslet.2010.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 11/30/2022]
|