1
|
Wu J, Zheng Y, Xu C, Jiao Q, Ye C, Chen T, Yu X, Pang K, Hao P. Rice Defense against Brown Planthopper Partially by Suppressing the Expression of Transferrin Family Genes of Brown Planthopper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2839-2850. [PMID: 35226488 DOI: 10.1021/acs.jafc.1c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transferrins are multifunctional proteins, but their role in the interaction of rice and brown planthopper (BPH) remains unclear. In this study, the full-length cDNA of transferrin genes NlTsf1, NlTsf2, and NlTsf3 was cloned. Reverse transcription quantitative polymerase chain reaction showed that the expressions of NlTsf1 and NlTsf3 were significantly suppressed in BPH reared on the resistant rice R1 by 68.0 and 86.7%, respectively, compared with that on the susceptible S9. The survival rate decreased to 3.3% for dsNlTsf3-treated nymphs, to 58.9% for dsNlTsf1, and to 56.7% for dsNlTsf2 on day 11. RNAi of NlTsf3 against females largely reduced the number of eggs by 99.4%, and it decreased by 48.6% for dsNlTsf1 but did not significantly decrease for dsNlTsf2. Collectively, NlTsf1, NlTsf2, and NlTsf3 are essential for the survival and fecundity of BPH and are differentially involved in the interaction between rice and BPH. Therefore, NlTsf1 and NlTsf3 may be used as targets to control BPH.
Collapse
Affiliation(s)
- Jiangen Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuanyuan Zheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenxi Xu
- School of Food Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Jiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tongtong Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Najera DG, Dittmer NT, Weber JJ, Kanost MR, Gorman MJ. Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis. INSECT SCIENCE 2021; 28:495-508. [PMID: 32237057 PMCID: PMC7668117 DOI: 10.1111/1744-7917.12783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 05/20/2023]
Abstract
Iron is essential to life, but surprisingly little is known about how iron is managed in nonvertebrate animals. In mammals, the well-characterized transferrins bind iron and are involved in iron transport or immunity, whereas other members of the transferrin family do not have a role in iron homeostasis. In insects, the functions of transferrins are still poorly understood. The goals of this project were to identify the transferrin genes in a diverse set of insect species, resolve the evolutionary relationships among these genes, and predict which of the transferrins are likely to have a role in iron homeostasis. Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins. Our analysis suggests that transferrin 2 arose prior to the origin of insects, and transferrins 1, 3, and 4 arose early in insect evolution. Primary sequence analysis of each of the insect transferrins was used to predict signal peptides, carboxyl-terminal transmembrane regions, GPI-anchors, and iron binding. Based on this analysis, we suggest that transferrins 2, 3, and 4 are unlikely to play a major role in iron homeostasis. In contrast, the transferrin 1 orthologs are predicted to be secreted, soluble, iron-binding proteins. We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis. Interestingly, it appears that the louse, aphid, and thrips lineages have lost the transferrin 1 gene and, thus, have evolved to manage iron without transferrins.
Collapse
Affiliation(s)
- Diana G Najera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Mintseris J, Gygi SP. High-density chemical cross-linking for modeling protein interactions. Proc Natl Acad Sci U S A 2020; 117:93-102. [PMID: 31848235 PMCID: PMC6955236 DOI: 10.1073/pnas.1902931116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detailed mechanistic understanding of protein complex function is greatly enhanced by insights from its 3-dimensional structure. Traditional methods of protein structure elucidation remain expensive and labor-intensive and require highly purified starting material. Chemical cross-linking coupled with mass spectrometry offers an alternative that has seen increased use, especially in combination with other experimental approaches like cryo-electron microscopy. Here we report advances in method development, combining several orthogonal cross-linking chemistries as well as improvements in search algorithms, statistical analysis, and computational cost to achieve coverage of 1 unique cross-linked position pair for every 7 amino acids at a 1% false discovery rate. This is accomplished without any peptide-level fractionation or enrichment. We apply our methods to model the complex between a carbonic anhydrase (CA) and its protein inhibitor, showing that the cross-links are self-consistent and define the interaction interface at high resolution. The resulting model suggests a scaffold for development of a class of protein-based inhibitors of the CA family of enzymes. We next cross-link the yeast proteasome, identifying 3,893 unique cross-linked peptides in 3 mass spectrometry runs. The dataset includes 1,704 unique cross-linked position pairs for the proteasome subunits, more than half of them intersubunit. Using multiple recently solved cryo-EM structures, we show that observed cross-links reflect the conformational dynamics and disorder of some proteasome subunits. We further demonstrate that this level of cross-linking density is sufficient to model the architecture of the 19-subunit regulatory particle de novo.
Collapse
Affiliation(s)
- Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Hughes AL, Friedman R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014; 66:651-61. [PMID: 25142446 DOI: 10.1007/s00251-014-0798-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, Coker Life Sciences Building, University of South Carolina, 715 Sumter St. Columbia, Columbia, SC, 29208, USA,
| | | |
Collapse
|
5
|
Durdagi S, Vullo D, Pan P, Kähkönen N, Määttä JA, Hytönen VP, Scozzafava A, Parkkila S, Supuran CT. Protein–Protein Interactions: Inhibition of Mammalian Carbonic Anhydrases I–XV by the Murine Inhibitor of Carbonic Anhydrase and Other Members of the Transferrin Family. J Med Chem 2012; 55:5529-35. [DOI: 10.1021/jm3004587] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Serdar Durdagi
- Department of Biological Sciences,
Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Drive, T2N 1N4, Calgary,
Alberta, Canada
| | - Daniela Vullo
- Laboratorio
di Chimica Bioinorganica,
Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence,
Italy
| | - Peiwen Pan
- Institute of Biomedical
Technology,
Fimlab Ltd., School of Medicine, and BioMediTech, University of Tampere and Tampere University Hospital, Biokatu,
33520 Tampere, Finland
| | - Niklas Kähkönen
- Institute of Biomedical
Technology,
Fimlab Ltd., School of Medicine, and BioMediTech, University of Tampere and Tampere University Hospital, Biokatu,
33520 Tampere, Finland
| | - Juha A. Määttä
- Institute of Biomedical
Technology,
Fimlab Ltd., School of Medicine, and BioMediTech, University of Tampere and Tampere University Hospital, Biokatu,
33520 Tampere, Finland
| | - Vesa P. Hytönen
- Institute of Biomedical
Technology,
Fimlab Ltd., School of Medicine, and BioMediTech, University of Tampere and Tampere University Hospital, Biokatu,
33520 Tampere, Finland
| | - Andrea Scozzafava
- Laboratorio
di Chimica Bioinorganica,
Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence,
Italy
| | - Seppo Parkkila
- Institute of Biomedical
Technology,
Fimlab Ltd., School of Medicine, and BioMediTech, University of Tampere and Tampere University Hospital, Biokatu,
33520 Tampere, Finland
| | - Claudiu T. Supuran
- Laboratorio
di Chimica Bioinorganica,
Polo Scientifico, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence,
Italy
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff
6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
McDevitt ME, Lambert LA. Molecular evolution and selection pressure in alpha-class carbonic anhydrase family members. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1854-61. [DOI: 10.1016/j.bbapap.2011.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/30/2011] [Accepted: 07/04/2011] [Indexed: 12/18/2022]
|
7
|
Gaffney JP, Valentine AM. Beyond bilobal: transferrin homologs having unusual domain architectures. Biochim Biophys Acta Gen Subj 2011; 1820:212-7. [PMID: 21985891 DOI: 10.1016/j.bbagen.2011.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/02/2011] [Accepted: 09/24/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND Most transferrin family proteins have a familiar bilobal structure, the result of an ancient gene duplication, with an iron binding site in each of two homologous lobes. Scattered throughout the evolutionary tree from algae to mammals, though, are transferrin homologs having other kinds of domain architectures. SCOPE OF REVIEW This review covers a variety of unusual transferrin forms, including monolobals, bilobals with one or both iron-binding sites abrogated, bilobals accessorized with long insertions or with membrane anchors, and even trilobals. The monolobal transferrin homologs from marine invertebrate ascidians are especially highlighted here. MAJOR CONCLUSIONS Unusual transferrin homologs appear scattered through much of the evolutionary tree. For some of these proteins, iron binding and/or iron transport appear to be the primary roles; for others they clearly are not. Many are incompletely or not at all studied. GENERAL SIGNIFICANCE Taken together, these proteins begin to offer a glimpse into how the transferrin architecture has been repurposed for a diversity of applications. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
8
|
Lambert LA. Molecular evolution of the transferrin family and associated receptors. Biochim Biophys Acta Gen Subj 2011; 1820:244-55. [PMID: 21693173 DOI: 10.1016/j.bbagen.2011.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND In vertebrates, serum transferrins are essential iron transporters that have bind and release Fe(III) in response to receptor binding and changes in pH. Some family members such as lactoferrin and melanotransferrin can also bind iron while others have lost this ability and have gained other functions, e.g., inhibitor of carbonic anhydrase (mammals), saxiphilin (frogs) and otolith matrix protein 1 (fish). SCOPE OF REVIEW This article provides an overview of the known transferrin family members and their associated receptors and interacting partners. MAJOR CONCLUSIONS The number of transferrin genes has proliferated as a result of multiple duplication events, and the resulting paralogs have developed a wide array of new functions. Some homologs in the most primitive metazoan groups resemble both serum and melanotransferrins, but the major yolk proteins show considerable divergence from the rest of the family. Among the transferrin receptors, the lack of TFR2 in birds and reptiles, and the lack of any TFR homologs among the insects draw attention to the differences in iron transport and regulation in those groups. GENERAL SIGNIFICANCE The transferrin family members are important because of their clinical significance, interesting biochemical properties, and evolutionary history. More work is needed to better understand the functions and evolution of the non-vertebrate family members. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Lisa A Lambert
- Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, USA.
| |
Collapse
|
9
|
Jungck JR, Donovan SS, Weisstein AE, Khiripet N, Everse SJ. Bioinformatics education dissemination with an evolutionary problem solving perspective. Brief Bioinform 2010; 11:570-81. [PMID: 21036947 DOI: 10.1093/bib/bbq028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bioinformatics is central to biology education in the 21st century. With the generation of terabytes of data per day, the application of computer-based tools to stored and distributed data is fundamentally changing research and its application to problems in medicine, agriculture, conservation and forensics. In light of this 'information revolution,' undergraduate biology curricula must be redesigned to prepare the next generation of informed citizens as well as those who will pursue careers in the life sciences. The BEDROCK initiative (Bioinformatics Education Dissemination: Reaching Out, Connecting and Knitting together) has fostered an international community of bioinformatics educators. The initiative's goals are to: (i) Identify and support faculty who can take leadership roles in bioinformatics education; (ii) Highlight and distribute innovative approaches to incorporating evolutionary bioinformatics data and techniques throughout undergraduate education; (iii) Establish mechanisms for the broad dissemination of bioinformatics resource materials and teaching models; (iv) Emphasize phylogenetic thinking and problem solving; and (v) Develop and publish new software tools to help students develop and test evolutionary hypotheses. Since 2002, BEDROCK has offered more than 50 faculty workshops around the world, published many resources and supported an environment for developing and sharing bioinformatics education approaches. The BEDROCK initiative builds on the established pedagogical philosophy and academic community of the BioQUEST Curriculum Consortium to assemble the diverse intellectual and human resources required to sustain an international reform effort in undergraduate bioinformatics education.
Collapse
Affiliation(s)
- John R Jungck
- Department of Biology, Beloit College, 700 College St, Beloit, WI 53511, USA.
| | | | | | | | | |
Collapse
|
10
|
Eckenroth BE, Mason AB, McDevitt ME, Lambert LA, Everse SJ. The structure and evolution of the murine inhibitor of carbonic anhydrase: a member of the transferrin superfamily. Protein Sci 2010; 19:1616-26. [PMID: 20572014 PMCID: PMC2975126 DOI: 10.1002/pro.439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The original signature of the transferrin (TF) family of proteins was the ability to bind ferric iron with high affinity in the cleft of each of two homologous lobes. However, in recent years, new family members that do not bind iron have been discovered. One new member is the inhibitor of carbonic anhydrase (ICA), which as its name indicates, binds to and strongly inhibits certain isoforms of carbonic anhydrase. Recently, mouse ICA has been expressed as a recombinant protein in a mammalian cell system. Here, we describe the 2.4 Å structure of mouse ICA from a pseudomerohedral twinned crystal. As predicted, the structure is bilobal, comprised of two α-β domains per lobe typical of the other family members. As with all but insect TFs, the structure includes the unusual reverse γ-turn in each lobe. The structure is consistent with the fact that introduction of two mutations in the N-lobe of murine ICA (mICA) (W124R and S188Y) allowed it to bind iron with high affinity. Unexpectedly, both lobes of the mICA were found in the closed conformation usually associated with presence of iron in the cleft, and making the structure most similar to diferric pig TF. Two new ICA family members (guinea pig and horse) were identified from genomic sequences and used in evolutionary comparisons. Additionally, a comparison of selection pressure (dN/dS) on functional residues reveals some interesting insights into the evolution of the TF family including that the N-lobe of lactoferrin may be in the process of eliminating its iron binding function.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Anne B Mason
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Meghan E McDevitt
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Lisa A Lambert
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Stephen J Everse
- Department of Biochemistry, University of VermontBurlington, Vermont 05405,*Correspondence to: Stephen J. Everse, Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Ave, Burlington, VT 05405. E-mail:
| |
Collapse
|
11
|
Abstract
Primary biliary cirrhosis (PBC) is characterized by unknown etiologies, anti-mitochondrial antibodies, injury of the biliary duct and the lack of a definite remedy. The etiologies of PBC have been well-discussed, including microorganisms and xenobiotics as the triggers for initiating the disease, and an abnormality of immune-tolerance. Recently, several animal models of PBC have been developed that may lead to the development of new therapies. Here, we reviewed the articles that address the etiology of PBC and the therapy for this disease for the confirmation of our current positions and future directions.
Collapse
Affiliation(s)
- Koji Fukushima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Seiryo, Aobaku, Sendai, Japan
| | | | | |
Collapse
|
12
|
James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RTA, Mason AB. Inequivalent contribution of the five tryptophan residues in the C-lobe of human serum transferrin to the fluorescence increase when iron is released. Biochemistry 2009; 48:2858-67. [PMID: 19281173 DOI: 10.1021/bi8022834] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF), with two Fe3+ binding lobes, transports iron into cells. Diferric hTF preferentially binds to a specific receptor (TFR) on the surface of cells, and the complex undergoes clathrin dependent receptor-mediated endocytosis. The clathrin-coated vesicle fuses with an endosome where the pH is lowered, facilitating iron release from hTF. On a biologically relevant time scale (2-3 min), the factors critical to iron release include pH, anions, a chelator, and the interaction of hTF with the TFR. Previous work, in which the increase in the intrinsic fluorescence signal was used to monitor iron release from the hTF/TFR complex, established that the TFR significantly enhances the rate of iron release from the C-lobe of hTF. In the current study, the role of the five C-lobe Trp residues in reporting the fluorescence change has been evaluated (+/-sTFR). Only four of the five recombinant Trp --> Phe mutants produced well. A single slow rate constant for iron release is found for the monoferric C-lobe (FeC hTF) and the four Trp mutants in the FeC hTF background. The three Trp residues equivalent to those in the N-lobe differed from the N-lobe and each other in their contributions to the fluorescent signal. Two rate constants are observed for the FeC hTF control and the four Trp mutants in complex with the TFR: k(obsC1) reports conformational changes in the C-lobe initiated by the TFR, and k(obsC2) is ascribed to iron release. Excitation at 295 nm (Trp only) and at 280 nm (Trp and Tyr) reveals interesting and significant differences in the rate constants for the complex.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington 05405, Vermont, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mason AB, Judson GL, Bravo MC, Edelstein A, Byrne SL, James NG, Roush ED, Fierke CA, Bobst CE, Kaltashov IA, Daughtery MA. Evolution reversed: the ability to bind iron restored to the N-lobe of the murine inhibitor of carbonic anhydrase by strategic mutagenesis. Biochemistry 2008; 47:9847-55. [PMID: 18712936 DOI: 10.1021/bi801133d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The murine inhibitor of carbonic anhydrase (mICA) is a member of the superfamily related to the bilobal iron transport protein transferrin (TF), which binds a ferric ion within a cleft in each lobe. Although the gene encoding ICA in humans is classified as a pseudogene, an apparently functional ICA gene has been annotated in mice, rats, cows, pigs, and dogs. All ICAs lack one (or more) of the amino acid ligands in each lobe essential for high-affinity coordination of iron and the requisite synergistic anion, carbonate. The reason why ICA family members have lost the ability to bind iron is potentially related to acquiring a new function(s), one of which is inhibition of certain carbonic anhydrase (CA) isoforms. A recombinant mutant of the mICA (W124R/S188Y) was created with the goal of restoring the ligands required for both anion (Arg124) and iron (Tyr188) binding in the N-lobe. Absorption and fluorescence spectra definitively show that the mutant binds ferric iron in the N-lobe. Electrospray ionization mass spectrometry confirms the presence of both ferric iron and carbonate. At the putative endosomal pH of 5.6, iron is released by two slow processes indicative of high-affinity coordination. Induction of specific iron binding implies that (1) the structure of mICA resembles those of other TF family members and (2) the N-lobe can adopt a conformation in which the cleft closes when iron binds. Because the conformational change in the N-lobe indicated by metal binding does not impact the inhibitory activity of mICA, inhibition of CA was tentatively assigned to the C-lobe. Proof of this assignment is provided by limited trypsin proteolysis of porcine ICA.
Collapse
Affiliation(s)
- Anne B Mason
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|