1
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
2
|
Yao Y, Li F, Zhang M, Jin L, Xie P, Liu D, Zhang J, Hu X, Lv F, Shang H, Zheng W, Sun X, Duanmu J, Wu F, Lan F, Xiao RP, Zhang Y. Targeting CaMKII-δ9 Ameliorates Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Inflammation. Circ Res 2022; 130:887-903. [PMID: 35152717 DOI: 10.1161/circresaha.121.319478] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND CaMKII (Ca2+/calmodulin-dependent kinase II) plays a central role in cardiac ischemia/reperfusion (I/R) injury-an important therapeutic target for ischemic heart disease. In the heart, CaMKII-δ is the predominant isoform and further alternatively spliced into 11 variants. In humans, CaMKII-δ9 and CaMKII-δ3, the major cardiac splice variants, inversely regulate cardiomyocyte viability with the former pro-death and the latter pro-survival. However, it is unknown whether specific inhibition of the detrimental CaMKII-δ9 prevents cardiac I/R injury and, if so, what is the underlying mechanism. Here, we aim to investigate the cardioprotective effect of specific CaMKII-δ9 inhibition against myocardial I/R damage and determine the underlying mechanisms. METHODS The role and mechanism of CaMKII-δ9 in cardiac I/R injury were investigated in mice in vivo, neonatal rat ventricular myocytes, and human embryonic stem cell-derived cardiomyocytes. RESULTS We demonstrate that CaMKII-δ9 inhibition with knockdown or knockout of its feature exon, exon 16, protects the heart against I/R-elicited injury and subsequent heart failure. I/R-induced cardiac inflammation was also ameliorated by CaMKII-δ9 inhibition, and compared with the previously well-studied CaMKII-δ2, CaMKII-δ9 overexpression caused more profound cardiac inflammation. Mechanistically, in addition to IKKβ (inhibitor of NF-κB [nuclear factor-κB] kinase subunit β), CaMKII-δ9, but not δ2, directly interacted with IκBα (NF-κB inhibitor α) with its feature exon 13-16-17 combination and increased IκBα phosphorylation and consequently elicited more pronounced activation of NF-κB signaling and inflammatory response. Furthermore, the essential role of CaMKII-δ9 in myocardial inflammation and damage was confirmed in human cardiomyocytes. CONCLUSIONS We not only identified CaMKII-δ9-IKK/IκB-NF-κB signaling as a new regulator of human cardiomyocyte inflammation but also demonstrated that specifically targeting CaMKII-δ9, the most abundant CaMKII-δ splice variant in human heart, markedly suppresses I/R-induced cardiac NF-κB activation, inflammation, and injury and subsequently ameliorates myocardial remodeling and heart failure, providing a novel therapeutic strategy for various ischemic heart diseases.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Fan Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Dairu Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Xueting Sun
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
| | - Jiaxin Duanmu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China (J.D., Y.Z.)
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (F.W., F. Lan)
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (F.W., F. Lan)
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China (R.-P.X.)
- PKU-Nanjing Institute of Translational Medicine, China (R.-P.X.)
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (Y.Y., F. Li, M.Z., L.J., P.X., D.L., J.Z., X.H., F. Lv, H.S., W.Z., X.S., R.-P.X., Y.Z.), Peking University, Beijing, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China (J.D., Y.Z.)
| |
Collapse
|
3
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
4
|
Oppezzo A, Bourseguin J, Renaud E, Pawlikowska P, Rosselli F. Microphthalmia transcription factor expression contributes to bone marrow failure in Fanconi anemia. J Clin Invest 2020; 130:1377-1391. [PMID: 31877112 DOI: 10.1172/jci131540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) attrition is considered the key event underlying progressive BM failure (BMF) in Fanconi anemia (FA), the most frequent inherited BMF disorder in humans. However, despite major advances, how the cellular, biochemical, and molecular alterations reported in FA lead to HSC exhaustion remains poorly understood. Here, we demonstrated in human and mouse cells that loss-of-function of FANCA or FANCC, products of 2 genes affecting more than 80% of FA patients worldwide, is associated with constitutive expression of the transcription factor microphthalmia (MiTF) through the cooperative, unscheduled activation of several stress-signaling pathways, including the SMAD2/3, p38 MAPK, NF-κB, and AKT cascades. We validated the unrestrained Mitf expression downstream of p38 in Fanca-/- mice, which display hallmarks of hematopoietic stress, including loss of HSC quiescence, DNA damage accumulation in HSCs, and reduced HSC repopulation capacity. Importantly, we demonstrated that shRNA-mediated downregulation of Mitf expression or inhibition of p38 signaling rescued HSC quiescence and prevented DNA damage accumulation. Our data support the hypothesis that HSC attrition in FA is the consequence of defects in the DNA-damage response combined with chronic activation of otherwise transiently activated signaling pathways, which jointly prevent the recovery of HSC quiescence.
Collapse
Affiliation(s)
- Alessia Oppezzo
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Julie Bourseguin
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Emilie Renaud
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France
| | - Patrycja Pawlikowska
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| | - Filippo Rosselli
- CNRS UMR8200 Equipe Labellisée "La Ligue Contre le Cancer,".,Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Orsay, France
| |
Collapse
|
5
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
6
|
Szymonowicz K, Oeck S, Malewicz NM, Jendrossek V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers (Basel) 2018; 10:cancers10030078. [PMID: 29562639 PMCID: PMC5876653 DOI: 10.3390/cancers10030078] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt’s activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
7
|
Ren HY, Liu F, Huang GL, Liu Y, Shen JX, Zhou P, Liu WM, Shen DY. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget 2018; 8:6718-6729. [PMID: 28035062 PMCID: PMC5351665 DOI: 10.18632/oncotarget.14267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Abnormal expression and function of retinoic acid receptor α (RARα) have been reported to be associated with various cancers including acute promyelocytic leukemia and hepatocellular carcinoma. However, the role and the mechanism of RARα in gastric carcinoma (GC) were unknown. Here, the expression of RARα was frequently elevated in human GC tissues and cell lines, and its overexpression was closely correlated with tumor size, lymph node metastasis and clinical stages in GC patients. Moreover, RARα overexpression was related with pathological differentiation. Functionally, RARα knockdown inhibited the proliferation and metastasis of GC cells, as well as enhanced drug susceptibility both in vitro and in vivo. Additionally, RARα knockdown suppressed GC progression through regulating the expression of cell proliferation, cell cycle, invasion and drug resistance associated proteins, such as PCNA, CyclinB1, CyclinD2, CyclinE, p21, MMP9 and MDR1. Mechanistically, the above oncogenic properties of RARα in GC were closely associated with Akt signaling activation. Moreover, overexpression of RARα was induced by IL-1β/Akt signaling activation, which suggested a positive feedback loop of IL-1β/Akt/RARα/Akt signaling in GC. Taken together, we demonstrated that RARα was frequently elevated in GC and exerted oncogenic properties. It might be a potential molecular target for GC treatment.
Collapse
Affiliation(s)
- Hong-Yue Ren
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, Fujian Province, China
| | - Fan Liu
- Department of Medical College, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Gui-Li Huang
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Yu Liu
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Jin-Xing Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| | - Pan Zhou
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Department of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Wen-Ming Liu
- Department of Gastroenterology, Zhongshan Hospital, Gastroenterology Institute of Xiamen University, Gastroenterology Center of Xiamen, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Department of Biobank, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
8
|
Botthof JG, Bielczyk-Maczyńska E, Ferreira L, Cvejic A. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish. Proc Natl Acad Sci U S A 2017; 114:E4452-E4461. [PMID: 28512217 PMCID: PMC5465903 DOI: 10.1073/pnas.1620631114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.
Collapse
Affiliation(s)
- Jan Gregor Botthof
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- National Health Service Blood and Transplant, Cambridge CB2 0PT, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom;
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
9
|
Roomi M, Kalinovsky T, Rath M, Niedzwiecki A. Cytokines, inducers and inhibitors modulate MMP-2 and MMP-9 secretion by human Fanconi anemia immortalized fibroblasts. Oncol Rep 2017; 37:1842-1848. [DOI: 10.3892/or.2017.5368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
|
10
|
Brosh RM, Bellani M, Liu Y, Seidman MM. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev 2017; 33:67-75. [PMID: 27223997 DOI: 10.1016/j.arr.2016.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features.
Collapse
|
11
|
Degan P, Ravera S, Cappelli E. Why is an energy metabolic defect the common outcome in BMFS? Cell Cycle 2016; 15:2571-2575. [PMID: 27579499 PMCID: PMC5053575 DOI: 10.1080/15384101.2016.1218103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
Inherited bone marrow failure syndromes (BMFS) are rare, distressing, inherited blood disorders of children. Although the genetic origin of these pathologies involves genes with different functions, all are associated with progressive haematopoietic impairment and an excessive risk of malignancies. Defects in energy metabolism induce oxidative stress, impaired energy production and an unbalanced ratio between ATP and AMP. This assumes an important role in self-renewal and differentiation in haematopoietic stem cells (HSC) and can play an important role in bone marrow failure. Defects in energetic/respiratory metabolism, in particular in FA and SDS cells, have been described recently and seem to be a pertinent argument in the discussion of the haematopoietic defect in BMFS, as an alternative to the hypotheses already established on this subject, which may shed new light on the evolution of these diseases.
Collapse
Affiliation(s)
- Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, Genova, Italy
| | - Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, Genova, Italy
| | | |
Collapse
|
12
|
Impaired immune response to Candida albicans in cells from Fanconi anemia patients. Cytokine 2015; 73:203-7. [DOI: 10.1016/j.cyto.2015.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
|
13
|
Li Y, Xing W, He YZ, Chen S, Rhodes SD, Yuan J, Zhou Y, Shi J, Bai J, Zhang FK, Yuan WP, Cheng T, Xu MJ, Yang FC. Interleukin 8/KC enhances G-CSF induced hematopoietic stem/progenitor cell mobilization in Fancg deficient mice. Stem Cell Investig 2014; 1:19. [PMID: 27358865 DOI: 10.3978/j.issn.2306-9759.2014.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by a progressive bone marrow aplasia, chromosomal instability, and acquisition of malignancies. Successful hematopoietic cell transplantation (HCT) for FA patients is challenging due to hypersensitivity to DNA alkylating agents and irradiation of FA patients. Early mobilization of autologous stem cells from the bone marrow has been thought to be ideal prior to the onset of bone marrow failure, which often occurs during childhood. However, the markedly decreased response of FA hematopoietic stem cells to granulocyte colony-stimulating factor (G-CSF) is circumventive of this autologous HCT approach. To-date, the mechanism for defective stem cell mobilization in G-CSF treated FA patients remains unclear. METHODS Fancg heterozygous (Fancg (+/-)) mice utilized in these studies. Student's t-test and one-way ANOVA were used to evaluate statistical differences between WT and Fancg (-/-) cells. Statistical significance was defined as P values less than 0.05. RESULTS Fancg deficient (Fancg (-/-)) mesenchymal stem/progenitor cells (MSPCs) produce significant lower levels of KC, an interleukin-8 (IL-8) related chemoattractant protein in rodents, as compared to wild type cells. Combinatorial administration of KC and G-CSF significantly increased the mobilization of hematopoietic stem/progenitor cells (HSPCs) in Fancg (-/-) mice. CONCLUSIONS In summary, our results suggest that KC/IL-8 could be proved useful in the synergistic mobilization of FA HSPCs in combination with G-CSF.
Collapse
Affiliation(s)
- Yan Li
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wen Xing
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yong-Zheng He
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shi Chen
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D Rhodes
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jin Yuan
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuan Zhou
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Shi
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Bai
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng-Kui Zhang
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei-Ping Yuan
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tao Cheng
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ming-Jiang Xu
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Feng-Chun Yang
- 1 Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA ; 2 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; 3 Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Epanchintsev A, Shyamsunder P, Verma RS, Lyakhovich A. IL-6, IL-8, MMP-2, MMP-9 are overexpressed in Fanconi anemia cells through a NF-κB/TNF-α dependent mechanism. Mol Carcinog 2014; 54:1686-99. [PMID: 25358651 DOI: 10.1002/mc.22240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 11/05/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive genetic disorder associated with a bone-marrow failure, genome instability, hypersensitivity to DNA crosslinking agents and a predisposition to cancer. Mutations have been documented in 16 FA genes that participate in the FA-BRCA DNA repair pathway, a fundamental pathway in the development of the disease and the presentation of its symptoms. FA cells have been characterized by an overproduction of cytokines, MAPKs, and Interleukins. Through this study we have identified the overexpression of additional secretory factors such as IL-6, IL-8, MMP-2, and MMP-9 in FA cells and in cells depleted of FANCA or FANCC and proved that their expression is under the control of NF-κB/TNF-α signaling pathways. We also demonstrated that these overexpressed secretory factors were effective in promoting the proliferation, migration, and invasion of surrounding tumor cells a fundamental event in the process of epithelial mesenchymal transition (EMT) and that they also modulated the expression of EMT markers such as E-cadherin and SNAIL. Overall our data suggest that the upregulation of EMT promoting factors in FA may contribute to predisposing FA patients to cancer, thereby providing new insights into possible therapeutic interventions.
Collapse
Affiliation(s)
- Alexey Epanchintsev
- Institute of Genetics and Molecular and Cellular Biology, Department of Functional Genomics and Cancer Biology, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale Illkirch Cedex, France
| | - Pavithra Shyamsunder
- Department of Biotechnology, Stem Cell and Molecular Biology Laboratory, Indian Institute of Technology Madras, Chennai, India
| | - Rama S Verma
- Department of Biotechnology, Stem Cell and Molecular Biology Laboratory, Indian Institute of Technology Madras, Chennai, India
| | - Alex Lyakhovich
- Novosibirsk Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Queen's University Belfast, Belfast, UK
| |
Collapse
|
15
|
Kamata M, Okitsu Y, Fujiwara T, Kanehira M, Nakajima S, Takahashi T, Inoue A, Fukuhara N, Onishi Y, Ishizawa K, Shimizu R, Yamamoto M, Harigae H. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica 2014; 99:1686-96. [PMID: 25150255 DOI: 10.3324/haematol.2014.105692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Mayumi Kamata
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Okitsu
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tohru Fujiwara
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Kanehira
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Nakajima
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taro Takahashi
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Inoue
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Fukuhara
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Onishi
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishizawa
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Harigae
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Zhou S, Xiao W, Pan X, Zhu M, Yang Z, Zhang F, Zheng C. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-κB-independent pathways. Cell Biol Int 2014; 38:747-56. [PMID: 24523227 DOI: 10.1002/cbin.10264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
Acute and chronic respiratory diseases are associated with abnormal coagulation regulation and fibrolysis. However, the detailed mechanism by which coagulation regulation and fibrolysis affect the occurrence and development of lung diseases remain to be elucidated. Protease activated receptor-1 (PAR-1), a major high-affinity thrombin receptor, and nuclear factor kappa B (NF-κB), a transcription factor, are involved in cell survival, differentiation, and proliferation. We have investigated the potential mechanism of thrombin-induced fibroblast proliferation and roles of PAR-1 and NF-κB signalling in this process. The effect of thrombin on proliferation of human pulmonary fibroblasts (HPF) was assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation assay. The expression of PAR1 and NF-κB subunit p65 protein was detected by Western blot. Nuclear translocation of p65 was examined by laser scanning confocal microscopy. We show that thrombin significantly increased proliferation of HPF as determined by induction of BrdU-positive incorporation ratio. Induced PAR1 protein expression was also seen in HPF cells treated with thrombin. However, thrombin had no significant effect on expression and translocation of NF-κB p65 in HPF cells. The results indicate that, by increasing protein expression and interacting with PAR1, thrombin promotes HPF proliferation. NF-κB signalling appears to play no role in this process.
Collapse
Affiliation(s)
- Shengyu Zhou
- Department of Clinical Teaching and Research, School of Nursing, Shandong University, Shandong, Jinan, 250012, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Immune status of Fanconi anemia patients: decrease in T CD8 and CD56dim CD16+ NK lymphocytes. Ann Hematol 2013; 93:761-7. [PMID: 24240977 DOI: 10.1007/s00277-013-1953-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Fanconi anemia (FA), a rare genetic disease in which patients' life is compromised mainly by hematological abnormalities and cancer prone, seems to be affected by subtle immune cell irregularities. Knowing that FA presents developmental abnormalities and, based on recent reports, suggesting that natural killer (NK) CD56(dim) and NK CD56(bright) correspond to sequential differentiation pathways, we investigated if there were changes on the total number of NK cells and subsets as well as on T CD4 and T CD8 lymphocytes and their ratio. A large sample of FA patients (n = 42) was used in this work, and the results were correlated to clinical hematological status of these patients. Among FA patients, a decreased proportion of T CD8(+) and NK CD56(dim)CD16(+) cells were observed when compared to healthy controls as well as an imbalance of the subsets NK lymphocytes. Data suggest that FA patients might have a defective cytotoxic response due to the lower number of cytotoxic cells as well as impairment in the differentiation process of the NK cells subsets which may be directly related to impairment of the immune surveillance observed in these patients.
Collapse
|
18
|
Abstract
Hematopoietic stem and progenitor cells with inactivated Fanconi anemia (FA) genes, FANCA and FANCC, are hypersensitive to inflammatory cytokines. One of these, tumor necrosis factor α (TNF-α), is also overproduced by FA mononuclear phagocytes in response to certain Toll-like receptor (TLR) agonists, creating an autoinhibitory loop that may contribute to the pathogenesis of progressive bone marrow (BM) failure and selection of TNF-α-resistant leukemic stem cell clones. In macrophages, the TNF-α overproduction phenotype depends on p38 mitogen-activated protein kinase (MAPK), an enzyme also known to induce expression of other inflammatory cytokines, including interleukin 1β (IL-1β). Reasoning that IL-1β might be involved in a like autoinhibitory loop, we determined that (1) TLR activation of FANCA- and FANCC-deficient macrophages induced overproduction of both TNF-α and IL-1β in a p38-dependent manner; (2) exposure of Fancc-deficient BM progenitors to IL-1β potently suppressed the expansion of multipotent progenitor cells in vitro; and (3) although TNF-α overexpression in FA cells is controlled posttranscriptionally by the p38 substrate MAPKAPK-2, p38-dependent overproduction of IL-1β is controlled transcriptionally. We suggest that multiple inflammatory cytokines overproduced by FANCA- and FANCC-deficient mononuclear phagocytes may contribute to the progressive BM failure that characterizes FA, and that to achieve suppression of this proinflammatory state, p38 is a more promising molecular therapeutic target than either IL-1β or TNF-α alone.
Collapse
|
19
|
Hu L, Huang W, Hjort E, Eklund EA. Increased Fanconi C expression contributes to the emergency granulopoiesis response. J Clin Invest 2013; 123:3952-66. [PMID: 23925293 DOI: 10.1172/jci69032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023] Open
Abstract
Emergency granulopoiesis is a component of the innate immune response that is induced in response to infectious or inflammatory challenge. It is characterized by the rapid expansion and differentiation of granulocyte/monocyte progenitor (GMP) populations, which is due in part to a shortened S-phase of the cell cycle. We found that IRF8 (also known as ICSBP), an interferon regulatory transcription factor that activates phagocyte effector genes during the innate immune response, activates the gene encoding Fanconi C (Fancc) in murine myeloid progenitor cells. Moreover, IRF8-induced Fancc transcription was augmented by treatment with IL-1β, an essential cytokine for emergency granulopoiesis. The Fanconi pathway participates in repair of stalled or collapsed replication forks during DNA replication, leading us to hypothesize that the Fanconi pathway contributes to genomic stability during emergency granulopoiesis. In support of this hypothesis, Fancc(-/-) mice developed anemia and neutropenia during repeated, failed episodes of emergency granulopoiesis. Failed emergency granulopoiesis in Fancc(-/-) mice was associated with excess apoptosis of HSCs and progenitor cells in the bone marrow and impaired HSC function. These studies have implications for understanding the pathogenesis of bone marrow failure in Fanconi anemia and suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Liping Hu
- Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
20
|
Cappelli E, Ravera S, Vaccaro D, Cuccarolo P, Bartolucci M, Panfoli I, Dufour C, Degan P. Mitochondrial respiratory complex I defects in Fanconi anemia. Trends Mol Med 2013; 19:513-4. [PMID: 23932594 DOI: 10.1016/j.molmed.2013.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Fanconi anemia (FA) is a rare, complex disorder that manifests in childhood. Children with FA suffer bone marrow failure, leukemias, or solid tumors. FA-associated mutations are found in 15 proteins that are involved in DNA repair. Some of these proteins have extranuclear activities involving redox balance, apoptosis, and energy metabolism; and recent data demonstrate respiratory impairment in FA cells, suggesting that altered mitochondrial function is a factor in this disease.
Collapse
Affiliation(s)
- Enrico Cappelli
- Hematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ravera S, Vaccaro D, Cuccarolo P, Columbaro M, Capanni C, Bartolucci M, Panfoli I, Morelli A, Dufour C, Cappelli E, Degan P. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A. Biochimie 2013; 95:1828-37. [PMID: 23791750 DOI: 10.1016/j.biochi.2013.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacology, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Korthof ET, Svahn J, de Latour RP, Terranova P, Moins-Teisserenc H, Socié G, Soulier J, Kok M, Bredius RG, van Tol M, Jol-van der Zijde EC, Pistorio A, Corsolini F, Parodi A, Battaglia F, Pistoia V, Dufour C, Cappelli E. Immunological profile of Fanconi anemia: a multicentric retrospective analysis of 61 patients. Am J Hematol 2013; 88:472-6. [PMID: 23483621 DOI: 10.1002/ajh.23435] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/07/2022]
Abstract
In this study, the immunological status of 61 patients with Fanconi anemia (FA) with advanced marrow failure before hematopoietic stem cell transplantation was analyzed by assessing the phenotype of peripheral blood lymphocytes, serum immunoglobulin (Ig) levels, and inflammatory cytokines. In patients with FA, total absolute lymphocytes (P < 0.0001), B cells (P < 0.0001), and NK cells (P = 0.003) were reduced when compared with normal controls. T cells (CD3), that is, cytotoxic T cells, naïve T cells, and regulatory T cells, showed a relative increase when compared with controls. Serum levels of IgG (P < 0.0001) and IgM (P = 0.004) were significantly lower, whereas IgA level was higher (P < 0.0001) than in normal controls. TGF-β (P = 0.007) and interleukin (IL)-6 (P = 0.0007) levels were increased in the serum of patients when compared with controls, whereas sCD40L level decreases (P < 0.0001). No differences were noted in the serum levels of IL-1β, IL-2, IL-4, IL-10, IL-13, IL-17, and IL-23 between FA subjects and controls. This comprehensive immunological study shows that patients with FA with advanced marrow failure have an altered immune status. This is in accordance with some characteristics of FA such as the proinflammatory and proapoptotic status. In addition, B lymphocyte failure may make tight and early immunological monitoring advisable.
Collapse
Affiliation(s)
- Elisabeth T. Korthof
- Department of Pediatrics/Willem-Alexander Children's Hospital, Division of Immunology, Haematology and Stem Cell Transplantation; Leiden University Medical Center; Leiden; The Netherlands
| | - Johanna Svahn
- Experimental and Clinical Haematology Unit, G. Gaslini Children's Hospital; Genova; Italy
| | | | - Paola Terranova
- Experimental and Clinical Haematology Unit, G. Gaslini Children's Hospital; Genova; Italy
| | | | | | - Jean Soulier
- Hematology and Fanconi Anemia Unit, Hospital St. Louis; Paris; France
| | - Marleen Kok
- Department of Pediatrics/Willem-Alexander Children's Hospital, Division of Immunology, Haematology and Stem Cell Transplantation; Leiden University Medical Center; Leiden; The Netherlands
| | - Robbert G.M. Bredius
- Department of Pediatrics/Willem-Alexander Children's Hospital, Division of Immunology, Haematology and Stem Cell Transplantation; Leiden University Medical Center; Leiden; The Netherlands
| | - Maarten van Tol
- Department of Pediatrics/Willem-Alexander Children's Hospital, Division of Immunology, Haematology and Stem Cell Transplantation; Leiden University Medical Center; Leiden; The Netherlands
| | - Els C.M. Jol-van der Zijde
- Department of Pediatrics/Willem-Alexander Children's Hospital, Division of Immunology, Haematology and Stem Cell Transplantation; Leiden University Medical Center; Leiden; The Netherlands
| | - Angela Pistorio
- Servizio Epidemiologia Clinica e Biostatistica, G. Gaslini Children's Hospital; Genova; Italy
| | - Fabio Corsolini
- Laboratorio Diagnosi Pre e Postnatale Malattie Metaboliche; G. Gaslini Children's Hospital; Genova; Italy
| | - Alessia Parodi
- Centre of Excellence for Biomedical Research (CEBR), University of Genova; Genova; Italy
| | - Florinda Battaglia
- Centre of Excellence for Biomedical Research (CEBR), University of Genova; Genova; Italy
| | - Vito Pistoia
- Oncology Laboratory; G. Gaslini Children's Hospital; Genova; Italy
| | - Carlo Dufour
- Experimental and Clinical Haematology Unit, G. Gaslini Children's Hospital; Genova; Italy
| | - Enrico Cappelli
- Experimental and Clinical Haematology Unit, G. Gaslini Children's Hospital; Genova; Italy
| |
Collapse
|
23
|
BIK (NBK) is a mediator of the sensitivity of Fanconi anaemia group C lymphoblastoid cell lines to interstrand DNA cross-linking agents. Biochem J 2013; 448:153-63. [PMID: 22873408 DOI: 10.1042/bj20120327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FA (Fanconi anaemia) is a rare hereditary disorder characterized by congenital malformations, progressive bone marrow failure and an extraordinary predisposition to develop cancer. At present, 15 genes have been related to this condition and mutations of them have also been found in different types of cancer. Bone marrow failure threatens the life of FA patients during the first decade of their life, but the mechanisms underlying this process are not completely understood. In the present study we investigate a possible imbalance between the expression of pro- and anti-apoptotic proteins as a cause for the hypersensitivity of FANCC (FA, complementation group C)-deficient cells to genotoxic stress. We found a BIK (Bcl-2 interacting killer) over-expression in lymphoblastoid cell lines derived from FA-C patients when compared with their phenotypically corrected counterparts. This overexpression has a transcriptional basis since the regulatory region of the gene shows higher activity in FANCC-deficient cells. We demonstrate the involvement of BIK in the sensitivity of FA-C lymphoblasts to interstrand DNA cross-linking agents as it is induced by these drugs and interference of its expression in these cells preserves their viability and reduces apoptosis. We investigate the mechanism of BIK overexpression in FANCC-deficient cells by analysing the activity of many different signalling pathways in these cells. Finally, we provide evidence of a previously undescribed indirect epigenetic regulation of BIK in FA-C lymphoblasts mediated by ΔNp73, an isoform of p73 lacking its transactivation domain that activates BIK through a proximal element in its promoter.
Collapse
|
24
|
Gong K, Chen C, Zhan Y, Chen Y, Huang Z, Li W. Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. J Biol Chem 2012; 287:35576-35588. [PMID: 22927446 PMCID: PMC3471698 DOI: 10.1074/jbc.m112.370585] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/18/2012] [Indexed: 12/31/2022] Open
Abstract
Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 7
- Benzylisoquinolines/chemistry
- Benzylisoquinolines/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Hep G2 Cells
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Reactive Oxygen Species/metabolism
- Stephania tetrandra/chemistry
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Ubiquitin-Activating Enzymes/biosynthesis
- Ubiquitin-Activating Enzymes/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ke Gong
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Chao Chen
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yao Zhan
- College of Life Sciences, Wuhan University, Wuhan 430072
| | - Yan Chen
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Zebo Huang
- College of Pharmacy, Wuhan University, Wuhan 430071, China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan 430072.
| |
Collapse
|
25
|
Cuccarolo P, Viaggi S, Degan P. New insights into redox response modulation in Fanconi's anemia cells by hydrogen peroxide and glutathione depletors. FEBS J 2012; 279:2479-94. [PMID: 22578062 DOI: 10.1111/j.1742-4658.2012.08629.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fanconi's anemia (FA) patients face severe pathological consequences. Bone marrow failure, the major cause of death in FA, accounting for as much as 80-90% of FA mortality, appears to be significantly linked to excessive apoptosis of hematopoietic cells induced by oxidative stress. However, 20-25% of FA patients develop malignancies of myeloid origin. A survival strategy for bone marrow and hematopoietic cells under selective pressure evidently exists. This study reports that lymphoblastoid cell lines derived from two FA patients displayed significant resistance to oxidative stress induced by treatments with H(2) O(2) and various glutathione (GSH) inhibitors that induce production of reactive oxygen species, GSH depletion and mitochondrial membrane depolarization. Among the various GSH inhibitors employed, FA cells appear particularly resistant to menadione (5 μm) and ethacrynic acid (ETA, 50 μm), two drugs that specifically target mitochondria. Even after pre-treatment with buthionine sulfoximine, a GSH synthesis inhibitor that induces enhanced induction of reactive oxygen species, FA cells maintain significant resistance to these drugs. These data suggest that the resistance to oxidative stress and the altered mitochondrial and metabolic functionality found in the FA mutant cells used in this study may indicate the survival strategy that is adopted in FA cells undergoing transformation. The study of redox and mitochondria regulation in FA may be of assistance in diagnosis of the disease and in the care of patients.
Collapse
Affiliation(s)
- Paola Cuccarolo
- Department of Epidemiology, Prevention and Special Functions, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | |
Collapse
|
26
|
Down-regulated expression of hsa-miR-181c in Fanconi anemia patients: implications in TNFα regulation and proliferation of hematopoietic progenitor cells. Blood 2012; 119:3042-9. [PMID: 22310912 DOI: 10.1182/blood-2011-01-331017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia (FA) is an inherited genetic disorder associated with BM failure and cancer predisposition. In the present study, we sought to elucidate the role of microRNAs (miRNAs) in the hematopoietic defects observed in FA patients. Initial studies showed that 3 miRNAs, hsa-miR-133a, hsa-miR-135b, and hsa-miR-181c, were significantly down-regulated in lymphoblastoid cell lines and fresh peripheral blood cells from FA patients. In vitro studies with cells expressing the luciferase reporter fused to the TNFα 3'-untranslated region confirmed in silico predictions suggesting an interaction between hsa-miR-181c and TNFα mRNA. These observations were consistent with the down-regulated expression of TNFα mediated by hsa-miR-181c in cells from healthy donors and cells from FA patients. Because of the relevance of TNFα in the hematopoietic defects of FA patients, in the present study, we transfected BM cells from FA patients with hsa-miR-181c to evaluate the impact of this miRNA on their clonogenic potential. hsa-miR-181c markedly increased the number and size of the myeloid and erythroid colonies generated by BM cells from FA patients. Our results offer new clues toward understanding the biologic basis of BM failure in FA patients and open new possibilities for the treatment of the hematologic dysfunction in FA patients based on miRNA regulation.
Collapse
|
27
|
Tiwari RL, Singh V, Singh A, Barthwal MK. IL-1R-associated kinase-1 mediates protein kinase Cδ-induced IL-1β production in monocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2632-45. [PMID: 21804018 DOI: 10.4049/jimmunol.1002526] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of IL-1R-associated kinase (IRAK)1 and its interaction with protein kinase C (PKC)δ in monocytes to regulate IL-1β production has not been reported so far. The present study thus investigates such mechanisms in the THP1 cell line and human monocytes. PMA treatment to THP1 cells induced CD11b, TLR2, TLR4, CD36, IRAK1, IRAK3, and IRAK4 expression, IRAK1 kinase activity, PKCδ and JNK phosphorylation, AP-1 and NF-κB activation, and secretory IL-1β production. Moreover, PMA-induced IL-1β production was significantly reduced in the presence of TLR2, TLR4, and CD11b Abs. Rottlerin, a PKCδ-specific inhibitor, significantly reduced PMA-induced IL-1β production as well as CD11b, TLR2 expression, and IRAK1-JNK activation. In PKCδ wild-type overexpressing THP1 cells, IRAK1 kinase activity and IL-1β production were significantly augmented, whereas recombinant inactive PKCδ and PKCδ small interfering RNA significantly inhibited basal and PMA-induced IRAK1 activation and IL-1β production. Endogenous PKCδ-IRAK1 interaction was observed in quiescent cells, and this interaction was regulated by PMA. IRAK1/4 inhibitors, their small interfering RNAs, and JNK inhibitor also attenuated PMA-induced IL-1β production. NF-κB activation inhibitor and SN50 peptide inhibitor, however, failed to affect PMA-induced IL-1β production. A similar role of IRAK1 in IL-1β production and its regulation by PKCδ was evident in the primary human monocytes, thus signifying the importance of our finding. To our knowledge, the results obtained demonstrate for the first time that IRAK1 and PKCδ functionally interact to regulate IL-1β production in monocytic cells. A novel mechanism of IL-1β production that involves TLR2, CD11b, and the PKCδ/IRAK1/JNK/AP-1 axis is thus being proposed.
Collapse
Affiliation(s)
- Rajiv Lochan Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226 001, India
| | | | | | | |
Collapse
|