1
|
Yang X, Fan Y, Liang J, Cao R, Zhang B, Li J, Li Z, He S, Liu N, Du J, Hu Y. Polyaptamer-Driven Crystallization of Alendronate for Synergistic Osteoporosis Treatment through Osteoclastic Inhibition and Osteogenic Promotion. ACS NANO 2024; 18:22431-22443. [PMID: 39103298 DOI: 10.1021/acsnano.4c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.
Collapse
Affiliation(s)
- Xingsen Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yu Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Junhao Liang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Runfeng Cao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P. R. China
| | - Beibei Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zejuan Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Stuttgart D-70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| |
Collapse
|
2
|
Liu X, Hu J, Ning Y, Xu H, Cai H, Yang A, Shi Z, Li Z. Aptamer Technology and Its Applications in Bone Diseases. Cell Transplant 2023; 32:9636897221144949. [PMID: 36591965 PMCID: PMC9811309 DOI: 10.1177/09636897221144949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aptamers are single-stranded nucleic acids (DNA, short RNA, or other artificial molecules) produced by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, which can be tightly and specifically combined with desired targets. As a comparable alternative to antibodies, aptamers have many advantages over traditional antibodies such as a strong chemical stability and rapid bulk production. In addition, aptamers can bind targets in various ways, and are not limited like the antigen-antibody combination. Studies have shown that aptamers have tremendous potential to diagnose and treat clinical diseases. However, only a few aptamer-based drugs have been used because of limitations of the aptamers and SELEX technology. To promote the development and applications of aptamers, we present a review of the methods optimizing the SELEX technology and modifying aptamers to boost the selection success rate and improve aptamer characteristics. In addition, we review the application of aptamers to treat bone diseases.
Collapse
Affiliation(s)
- Xiangzhong Liu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Jing Hu
- Wuhan Children’s Hospital, Tongji
Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yu Ning
- Department of Orthopaedics, Xiangyang
Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Chinese
Medicine, Xiangyang, China
| | - Haijia Xu
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Hantao Cai
- Department of Orthopaedics, Wenling
First People’s Hospital, Taizhou, China
| | - Aofei Yang
- Department of Orthopaedics, Hubei
Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhengshuai Shi
- Department of Orthopaedics, Wuhan
Sports University, Wuhan, China
| | - Zhanghua Li
- Department of Orthopaedics, Wuhan Third
Hospital, Tongren Hospital of Wuhan University, Wuhan, China,Zhanghua Li, Department of Orthopaedics,
Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216, Guanshan
Avenue, Hongshan District, Wuhan 430074, Hubei Province, China.
| |
Collapse
|
3
|
Yu Y, Wang L, Ni S, Li D, Liu J, Chu HY, Zhang N, Sun M, Li N, Ren Q, Zhuo Z, Zhong C, Xie D, Li Y, Zhang ZK, Zhang H, Li M, Zhang Z, Chen L, Pan X, Xia W, Zhang S, Lu A, Zhang BT, Zhang G. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun 2022; 13:4241. [PMID: 35869074 PMCID: PMC9307627 DOI: 10.1038/s41467-022-31997-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractSclerostin negatively regulates bone formation by antagonizing Wnt signalling. An antibody targeting sclerostin for the treatment of postmenopausal osteoporosis was approved by the U.S. Food and Drug Administration, with a boxed warning for cardiovascular risk. Here we demonstrate that sclerostin participates in protecting cardiovascular system and inhibiting bone formation via different loops. Loop3 deficiency by genetic truncation could maintain sclerostin’s protective effect on the cardiovascular system while attenuating its inhibitory effect on bone formation. We identify an aptamer, named aptscl56, which specifically targets sclerostin loop3 and use a modified aptscl56 version, called Apc001PE, as specific in vivo pharmacologic tool to validate the above effect of loop3. Apc001PE has no effect on aortic aneurysm and atherosclerotic development in ApoE−/− mice and hSOSTki.ApoE−/− mice with angiotensin II infusion. Apc001PE can promote bone formation in hSOSTki mice and ovariectomy-induced osteoporotic rats. In summary, sclerostin loop3 cannot participate in protecting the cardiovascular system, but participates in inhibiting bone formation.
Collapse
|
4
|
Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022; 12:2150-2170. [PMID: 35646527 PMCID: PMC9136615 DOI: 10.1016/j.apsb.2022.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sclerostin, a protein secreted from osteocytes, negatively regulates the WNT signaling pathway by binding to the LRP5/6 co-receptors and further inhibits bone formation and promotes bone resorption. Sclerostin contributes to musculoskeletal system-related diseases, making it a promising therapeutic target for the treatment of WNT-related bone diseases. Additionally, emerging evidence indicates that sclerostin contributes to the development of cancers, obesity, and diabetes, suggesting that it may be a promising therapeutic target for these diseases. Notably, cardiovascular diseases are related to the protective role of sclerostin. In this review, we summarize three distinct types of inhibitors targeting sclerostin, monoclonal antibodies, aptamers, and small-molecule inhibitors, from which monoclonal antibodies have been developed. As the first-in-class sclerostin inhibitor approved by the U.S. FDA, the monoclonal antibody romosozumab has demonstrated excellent effectiveness in the treatment of postmenopausal osteoporosis; however, it conferred high cardiovascular risk in clinical trials. Furthermore, romosozumab could only be administered by injection, which may cause compliance issues for patients who prefer oral therapy. Considering these above safety and compliance concerns, we therefore present relevant discussion and offer perspectives on the development of next-generation sclerostin inhibitors by following several ways, such as concomitant medication, artificial intelligence-based strategy, druggable modification, and bispecific inhibitors strategy.
Collapse
|
5
|
Novel Aptamer-Based Small-Molecule Drug Screening Assay to Identify Potential Sclerostin Inhibitors against Osteoporosis. Int J Mol Sci 2021; 22:ijms22158320. [PMID: 34361085 PMCID: PMC8348959 DOI: 10.3390/ijms22158320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
A novel aptamer-based competitive drug screening platform for osteoporosis was devised in which fluorescence-labeled, sclerostin-specific aptamers compete with compounds from selected chemical libraries for the binding of immobilized recombinant human sclerostin to achieve high-throughput screening for potential small-molecule sclerostin inhibitors and to facilitate drug repurposing and drug discovery. Of the 96 selected inhibitors and FDA-approved drugs, six were shown to result in a significant decrease in the fluorescence intensity of the aptamer, suggesting a higher affinity toward sclerostin compared with that of the aptamer. The targets of these potential sclerostin inhibitors were correlated to lipid or bone metabolism, and several of the compounds have already been shown to be potential osteogenic activators, indicating that the aptamer-based competitive drug screening assay offered a potentially reliable strategy for the discovery of target-specific new drugs. The six potential sclerostin inhibitors suppressed the level of both intracellular and/or extracellular sclerostin in mouse osteocyte IDG-SW3 and increased alkaline phosphatase activity in IDG-SW3 cells, human bone marrow-derived mesenchymal stem cells and human fetal osteoblasts hFOB1.19. Potential small-molecule drug candidates obtained in this study are expected to provide new therapeutics for osteoporosis as well as insights into the structure-activity relationship of sclerostin inhibitors for rational drug design.
Collapse
|
6
|
Rhodamine 6G-Ligand Influencing G-Quadruplex Stability and Topology. Int J Mol Sci 2021; 22:ijms22147639. [PMID: 34299257 PMCID: PMC8305571 DOI: 10.3390/ijms22147639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The involvement of G-quadruplex (G4) structures in nucleic acids in various molecular processes in cells such as replication, gene-pausing, the expression of crucial cancer-related genes and DNA damage repair is well known. The compounds targeting G4 usually bind directly to the G4 structure, but some ligands can also facilitate the G4 folding of unfolded G-rich sequences and stabilize them even without the presence of monovalent ions such as sodium or potassium. Interestingly, some G4-ligand complexes can show a clear induced CD signal, a feature which is indirect proof of the ligand interaction. Based on the dichroic spectral profile it is not only possible to confirm the presence of a G4 structure but also to determine its topology. In this study we examine the potential of the commercially available Rhodamine 6G (RhG) as a G4 ligand. RhG tends to convert antiparallel G4 structures to parallel forms in a manner similar to that of Thiazole Orange. Our results confirm the very high selectivity of this ligand to the G4 structure. Moreover, the parallel topology of G4 can be verified unambiguously based on the specific induced CD profile of the G4-RhG complex. This feature has been verified on more than 50 different DNA sequences forming various non-canonical structural motifs.
Collapse
|
7
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
8
|
Roxo C, Kotkowiak W, Pasternak A. G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules 2019; 24:E3781. [PMID: 31640176 PMCID: PMC6832456 DOI: 10.3390/molecules24203781] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
G-quadruplexes constitute a unique class of nucleic acid structures formed by G-rich oligonucleotides of DNA- or RNA-type. Depending on their chemical nature, loops length, and localization in the sequence or structure molecularity, G-quadruplexes are highly polymorphic structures showing various folding topologies. They may be formed in the human genome where they are believed to play a pivotal role in the regulation of multiple biological processes such as replication, transcription, and translation. Thus, natural G-quadruplex structures became prospective targets for disease treatment. The fast development of systematic evolution of ligands by exponential enrichment (SELEX) technologies provided a number of G-rich aptamers revealing the potential of G-quadruplex structures as a promising molecular tool targeted toward various biologically important ligands. Because of their high stability, increased cellular uptake, ease of chemical modification, minor production costs, and convenient storage, G-rich aptamers became interesting therapeutic and diagnostic alternatives to antibodies. In this review, we describe the recent advances in the development of G-quadruplex based aptamers by focusing on the therapeutic and diagnostic potential of this exceptional class of nucleic acid structures.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
9
|
Squamous Cell Carcinoma Biomarker Sensing on a Strontium Oxide-Modified Interdigitated Electrode Surface for the Diagnosis of Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2807123. [PMID: 31080815 PMCID: PMC6475575 DOI: 10.1155/2019/2807123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022]
Abstract
Cervical cancer is a life-threatening complication, appearing as the uncontrolled growth of abnormal cells in the lining of the cervix. Every year, increasing numbers of cervical cancer cases are reported worldwide. Different identification strategies were proposed to detect cervical cancer at the earlier stages using various biomarkers. Squamous cell carcinoma antigen (SCC-Ag) is one of the potential biomarkers for this diagnosis. Nanomaterial-based detection systems were shown to be efficient with different clinical biomarkers. In this study, we have demonstrated strontium oxide-modified interdigitated electrode (IDE) fabrication by the sol-gel method and characterized by scanning electron microscopy and high-power microscopy. Analysis of the bare devices indicated the reproducibility with the fabrication, and further pH scouting on the device revealed that the reliability of the working pH ranges from 3 to 9. The sensing surface was tested to detect SCC-Ag against its specific antibody; the detection limit was found to be 10 pM, and the sensitivity was in the range between 1 and 10 pM as calculated by 3σ. The specificity experiment was carried out using major proteins from human serum, such as albumin and globulin. SCC-Ag was shown to be selectively detected on the strontium oxide-modified IDE surface.
Collapse
|
10
|
Selection and Characterization of a DNA Aptamer Specifically Targeting Human HECT Ubiquitin Ligase WWP1. Int J Mol Sci 2018. [PMID: 29518962 PMCID: PMC5877624 DOI: 10.3390/ijms19030763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid aptamers hold promise as therapeutic tools for specific, tailored inhibition of protein targets with several advantages when compared to small molecules or antibodies. Nuclear WW domain containing E3 ubiquitin ligase 1 (WWP1) ubiquitin ligase poly-ubiquitinates Runt-related transcription factor 2 (Runx2), a key transcription factor associated with osteoblast differentiation. Since WWP1 and an adapter known as Schnurri-3 are negative regulators of osteoblast function, the disruption of this complex has the potential to increase bone deposition for osteoporosis therapy. Here, we develop new DNA aptamers that bind and inhibit WWP1 then investigate efficacy in an osteoblastic cell culture. DNA aptamers were selected against three different truncations of the HECT domain of WWP1. Aptamers which bind specifically to a C-lobe HECT domain truncation were observed to enrich during the selection procedure. One particular DNA aptamer termed C3A was further evaluated for its ability to bind WWP1 and inhibit its ubiquitination activity. C3A showed a low µM binding affinity to WWP1 and was observed to be a non-competitive inhibitor of WWP1 HECT ubiquitin ligase activity. When SaOS-2 osteoblastic cells were treated with C3A, partial localization to the nucleus was observed. The C3A aptamer was also demonstrated to specifically promote extracellular mineralization in cell culture experiments. The C3A aptamer has potential for further development as a novel osteoporosis therapeutic strategy. Our results demonstrate that aptamer-mediated inhibition of protein ubiquitination can be a novel therapeutic strategy.
Collapse
|
11
|
Zheng Y, Qu J, Xue F, Zheng Y, Yang B, Chang Y, Yang H, Zhang J. Novel DNA Aptamers for Parkinson's Disease Treatment Inhibit α-Synuclein Aggregation and Facilitate its Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:228-242. [PMID: 29858057 PMCID: PMC5992446 DOI: 10.1016/j.omtn.2018.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) is one of the most prevalent forms of synucleinopathies, and it is characterized neuropathologically by the presence of intracellular inclusions composed primarily of the protein α-synuclein (α-syn) in neurons. The previous immunotherapy targeting the α-syn in PD models with monoclonal antibodies has established α-syn protein as an effective target for neuronal cell death. However, due to the essential weaknesses of antibody and the unique features of aptamers, the aptamers could represent a promising alternative to the currently used antibodies in immunotherapy for PD. In this study, the purified human α-syn was used as the target for in vitro selection of aptamers using systematic evolution by exponential enrichment. This resulted in the identification of two 58-base DNA aptamers with a high binding affinity and good specificity to the α-syn, with KD values in the nanomolar range. Both aptamers could effectively reduce α-syn aggregation in vitro and in cells and target the α-syn to intracellular degradation through the lysosomal pathway. These effects consequently rescued the mitochondrial dysfunction and cellular defects caused by α-syn overexpression. To our knowledge, this is the first study to employ aptamers to block the aberrant cellular effects of the overexpressed α-syn in cells.
Collapse
Affiliation(s)
- Yuan Zheng
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Jing Qu
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Fenqin Xue
- Core Facilities Center, Capital Medical University, Beijing 100069, China
| | - Yan Zheng
- Department of Physiology, Capital Medical University, Beijing 100069, China
| | - Bo Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226001, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Hui Yang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing 100069, China.
| |
Collapse
|
12
|
Kwok CK, Merrick CJ. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol 2017; 35:997-1013. [PMID: 28755976 DOI: 10.1016/j.tibtech.2017.06.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
Abstract
Guanine (G)-rich sequences in nucleic acids can assemble into G-quadruplex structures that involve G-quartets linked by loop nucleotides. The structural and topological diversity of G-quadruplexes have attracted great attention for decades. Recent methodological advances have advanced the identification and characterization of G-quadruplexes in vivo as well as in vitro, and at a much higher resolution and throughput, which has greatly expanded our current understanding of G-quadruplex structure and function. Accumulating knowledge about the structural properties of G-quadruplexes has helped to design and develop a repertoire of molecular and chemical tools for biological applications. This review highlights how these exciting methods and findings have opened new doors to investigate the potential functions and applications of G-quadruplexes in basic and applied biosciences.
Collapse
Affiliation(s)
- Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Keele, Staffordshire, UK.
| |
Collapse
|
13
|
Platella C, Riccardi C, Montesarchio D, Roviello GN, Musumeci D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Acta Gen Subj 2017; 1861:1429-1447. [PMID: 27865995 PMCID: PMC7117017 DOI: 10.1016/j.bbagen.2016.11.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules identified to recognize with high affinity specific targets including proteins, small molecules, ions, whole cells and even entire organisms, such as viruses or bacteria. They can be identified from combinatorial libraries of DNA or RNA oligonucleotides by SELEX technology, an in vitro iterative selection procedure consisting of binding (capture), partitioning and amplification steps. Remarkably, many of the aptamers selected against biologically relevant protein targets are G-rich sequences that can fold into stable G-quadruplex (G4) structures. Aiming at disseminating novel inspiring ideas within the scientific community in the field of G4-structures, the emphasis of this review is placed on: 1) recent advancements in SELEX technology for the efficient and rapid identification of new candidate aptamers (introduction of microfluidic systems and next generation sequencing); 2) recurrence of G4 structures in aptamers selected by SELEX against biologically relevant protein targets; 3) discovery of several G4-forming motifs in important regulatory regions of the human or viral genome bound by endogenous proteins, which per se can result into potential aptamers; 4) an updated overview of G4-based aptamers with therapeutic potential and 5) a discussion on the most attractive G4-based aptamers for diagnostic applications. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy
| | | | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages, CNR, Napoli, Italy.
| |
Collapse
|
14
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers. Int J Mol Sci 2016; 17:358. [PMID: 26978355 PMCID: PMC4813219 DOI: 10.3390/ijms17030358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the detailed advantages and disadvantages of antibodies and aptamers in therapeutic applications and summarize recent progress in aptamer selection and modification approaches. We will present therapeutic oligonucleotide aptamers in preclinical studies for skeletal diseases and further discuss oligonucleotide aptamers in different stages of clinical evaluation for various disease therapies including macular degeneration, cancer, inflammation and coagulation to highlight the bright commercial future and potential challenges of therapeutic oligonucleotide aptamers.
Collapse
|
16
|
Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol 2015; 3:9. [PMID: 25699253 PMCID: PMC4313589 DOI: 10.3389/fbioe.2015.00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures need to be taken by physicians. It is important to combine cells, scaffolds and growth factors, and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany ; Institute for Advanced Science, Technical University Munich , Garching , Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany
| |
Collapse
|
17
|
Tóthová P, Krafčíková P, Víglaský V. Formation of highly ordered multimers in G-quadruplexes. Biochemistry 2014; 53:7013-27. [PMID: 25347520 DOI: 10.1021/bi500773c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G-Rich DNA and RNA have a higher propensity to form G-quadruplex structures, but the presence of G-runs alone is not sufficient to prove that such sequences can form stable G-quadruplexes. While G-rich sequences are essential for G-quadruplex formation, not all G-rich sequences have the propensity to form G-quadruplex structures. In addition, monovalent metal ions, dehydrating agents, and loop sequences connecting the G-runs also play important roles in the topology of G-quadruplex folding. To date, no quantitative analysis of the CD spectra of G-quadruplexes in confrontation with the electrophoretic results has been performed. Therefore, in this study, we use information gained through the analysis of a series of well-known G-quadruplex-forming sequences to evaluate other less-studied sets of aptameric sequences. A simple and cost-effective methodology that can verify the formation of G-quadruplex motifs from oligomeric DNA sequences and a technique to determine the molecularity of these structures are also described. This methodology could be of great use in the prediction of G-quadruplex assembly, and the basic principles of our techniques can be extrapolated for any G-rich DNA sequences. This study also presents a model that can predict the multimerization of G-quadruplexes; the predictions offered by this model are shown to match the results obtained using circular dichroism.
Collapse
Affiliation(s)
- Petra Tóthová
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, P. J. Šafárik University , 04001 Košice, Slovakia
| | | | | |
Collapse
|
18
|
Cho S, Park L, Chong R, Kim YT, Lee JH. Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection. Biosens Bioelectron 2014; 52:310-6. [PMID: 24080210 PMCID: PMC7126785 DOI: 10.1016/j.bios.2013.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/29/2013] [Accepted: 09/07/2013] [Indexed: 02/02/2023]
Abstract
Cost-effective and sensitive aptasensor with guanine chemiluminescence detection capable of simply quantifying thrombin in human serum was developed using thrombin aptamer (TBA), one of the G-quadruplex DNA aptamers, without expensive nanoparticles and complicated procedures. Guanines of G-quadruplex TBA-conjugated carboxyfluorescein (6-FAM) bound with thrombin do not react with 3,4,5-trimethoxylphenylglyoxal (TMPG) in the presence of tetra-n-propylammonium hydroxide (TPA), whereas guanines of free TBA- and TBA-conjugated 6-FAM immobilized on the surface of graphene oxide rapidly react with TMPG to emit light. Thus, guanine chemiluminescence in 5% human serum with thrombin was lower than that without thrombin when TBA-conjugated 6-FAM was added in two samples and incubated for 20 min. In other words, the brightness of guanine chemiluminescence was quenched due to the formation of G-quadruplex TBA-conjugated 6-FAM bound with thrombin in a sample. High-energy intermediate, capable of emitting dim light by itself, formed from the reaction between guanines of TBA and TMPG in the presence of TPA, transfers energy to 6-FAM to emit bright light based on the principle of chemiluminescence energy transfer (CRET). G-quadruplex TBA aptasensor devised using the rapid interaction between TBA-conjugated 6-FAM and thrombin quantified trace levels of thrombin without complicated procedures. The limit of detection (LOD = background + 3 × standard deviation) of G-quadruplex TBA aptasensor with good linear calibration curve, accuracy, precision, and recovery was as low as 12.3 nM in 5% human serum. Using the technology reported in this research, we expect that various types of G-quadruplex DNA aptasensors capable of specifically sensing a target molecule such as ATP, HIV, ochratoxin, potassium ions, and thrombin can be developed.
Collapse
Affiliation(s)
- Sandy Cho
- Luminescent MD, LLC, 20140 Scholar Dr., Hagerstown, MD 21742, United States
| | | | | | | | | |
Collapse
|
19
|
Guo B, Peng S, Liang C, He X, Xiao C, Lu C, Jiang M, Zhao H, Lu A, Zhang G. Recent developments in bone anabolic therapy for osteoporosis. Expert Rev Endocrinol Metab 2012; 7:677-685. [PMID: 30754125 DOI: 10.1586/eem.12.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a disorder in which there is a net bone loss and microarchitectural deterioration with an increased risk of bone fracture because of uncoupling of bone formation and bone resorption. The treatment of osteoporosis aims to inhibit bone resorption by osteoclasts and/or promote bone formation by osteoblasts. However, most of the current approaches for treating osteoporosis focus on inhibiting bone resorption. As the only US FDA-approved anabolic agent, the recombinant human parathyroid hormone is recommended for consecutive 2-year period treatment in a clinical setting. Therefore, it is highly desirable to identify novel bone anabolic agents or approaches for osteoporosis treatment. In this review, the authors introduce a new bone anabolic therapy by means of RNAi strategy. Specifically, the authors also discuss the current status and perspectives for RNAi as a novel anabolic approach in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Baosheng Guo
- a Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Songlin Peng
- a Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chao Liang
- a Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaojuan He
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Cheng Xiao
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Cheng Lu
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Miao Jiang
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Hongyan Zhao
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Aiping Lu
- b Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing 100700, China
| | - Ge Zhang
- c Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
20
|
Anastasilakis AD, Polyzos SA, Toulis KA. Role of wingless tail signaling pathway in osteoporosis: an update of current knowledge. Curr Opin Endocrinol Diabetes Obes 2011; 18:383-8. [PMID: 21897222 DOI: 10.1097/med.0b013e32834afff2] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Wingless tail (Wnt) pathway is crucial for osteoblast activation and action. This review summarizes the evidence published during the previous year on the emerging role of Wnt signaling alterations in the pathogenesis, diagnosis, and potential therapeutic approaches of osteoporosis. RECENT FINDINGS New insights into the mechanisms regulating Wnt/β-catenin canonical pathway, including the role of Kremen-2 receptor, lamin A/C protein, periostin, and pleiotropin in bone physiology, the crosstalk between the RUNX-2 transcription-factor cascade and the Wnt pathway, and the concept that individual Wnt ligands may have a unique and distinct mission in bone milieu, are presented. Nutritional habits may affect Wnt signaling in bone. Serum sclerostin and dickkopf-1 levels may serve as markers of bone metabolism and disease, although further standardization methods are required. Finally, the effect of current antiosteoporotic treatments on Wnt signaling is discussed, as well as the therapeutic potential of drugs targeting either Wnt signaling amplification or Wnt antagonists' attenuation. SUMMARY Although Wnt pathway is currently a field of thorough investigation, it is still far from been fully elucidated. Understanding its complex pathophysiology has evoked promising therapeutic approaches for osteoporosis. However, given that Wnt signaling is crucial for many tissues, emerging knowledge should be cautiously translated in therapeutics.
Collapse
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 General Military Hospital, Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | |
Collapse
|
21
|
Wilson R. Preparation of single-stranded DNA from PCR products with streptavidin magnetic beads. Nucleic Acid Ther 2011; 21:437-40. [PMID: 22047177 DOI: 10.1089/nat.2011.0322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The preparation of single-stranded DNA from double-stranded PCR products is an essential step in the identification of aptamers by Systematic Evolution of Ligands by EXponential enrichment (SELEX). The most widely used method for producing single-stranded DNA is alkaline denaturation of biotinylated PCR products attached to streptavidin-coated magnetic beads. Recently, it has been suggested that this method may be unsuitable due to the release of interfering amounts of streptavidin and biotinylated DNA. In this article, the alkaline method is compared with a thermal method that is known to release significant amounts of streptavidin and biotinylated DNA. Results show that trace amounts of streptavidin and biotinylated DNA are released in the alkaline method, but this can be curtailed by preconditioning the beads in aqueous sodium hydroxide. The main product in the alkaline method is single-stranded DNA, which is produced in high yield.
Collapse
Affiliation(s)
- Robert Wilson
- Institute Of Integrative Biology, Liverpool University, Liverpool, UK.
| |
Collapse
|
22
|
Shum KT, Lui ELH, Wong SCK, Yeung P, Sam L, Wang Y, Watt RM, Tanner JA. Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2. Biochemistry 2011; 50:3261-71. [PMID: 21381755 DOI: 10.1021/bi2001455] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inorganic polyphosphate (polyP) plays a number of critical roles in bacterial persistence, stress, and virulence. PolyP intracellular metabolism is regulated by the polyphosphate kinase (PPK) protein families, and inhibition of PPK activity is a potential approach to disrupting polyP-dependent processes in pathogenic organisms. Here, we biochemically characterized Mycobacterium tuberculosis (MTB) PPK2 and developed DNA-based aptamers that inhibit the enzyme's catalytic activities. MTB PPK2 catalyzed polyP-dependent phosphorylation of ADP to ATP at a rate 838 times higher than the rate of polyP synthesis. Gel filtration chromatography suggested MTB PPK2 to be an octamer. DNA aptamers were isolated against MTB PPK2. Circular dichroism revealed that aptamers grouped into two distinct classes of secondary structure; G-quadruplex and non-G-quadruplex. A selected G-quadruplex aptamer was highly selective for binding to MTB PPK2 with a dissociation constant of 870 nM as determined by isothermal titration calorimetry. The binding between MTB PPK2 and the aptamer was exothermic yet primarily driven by entropy. This G-quadruplex aptamer inhibited MTB PPK2 with an IC(50) of 40 nM and exhibited noncompetitive inhibition kinetics. Mutational mechanistic analysis revealed an aptamer G-quadruplex motif is critical for enzyme inhibition. The aptamer was also tested against Vibrio cholerae PPK2, where it showed an IC(50) of 105 nM and insignificant inhibition against more distantly related Laribacter hongkongensis PPK2.
Collapse
Affiliation(s)
- Ka To Shum
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|