1
|
Liu X, Li W, Liu Y, Wang X, Shi Q, Yang W, Tu J, Wang Y, Sheng C, Liu N. Discovery of new fungal jumonji H3K27 demethylase inhibitors for the treatment of Cryptococcus neoformans and Candida auris infections. Eur J Med Chem 2025; 281:117028. [PMID: 39536495 DOI: 10.1016/j.ejmech.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Invasive fungal infections have become a serious public health problem. To tackle the challenges of limited efficacy in antifungal therapy and severe drug resistance, antifungal drugs with new mechanisms of action are urgently needed. Our previous study identified JIB-04 to be an inhibitor of fungal histone demethylase (HDM). To promote target validation and inhibitor design, herein a series of new JIB-04 derivatives were designed and synthesized. After the establishment of structure-activity relationship, compound A4 was identified to possess potent antifungal activity against Cryptococcus neoformans and Candida auris. Compared to lead compound JIB-04, compound A4 was a more potent HDM inhibitor and exhibited better water solubility, virulence factors inhibitory activity and in vivo antifungal potency. Collectively, this study further confirmed that fungal HDMs were potential antifungal targets and compound A4 was a promising antifungal lead compound.
Collapse
Affiliation(s)
- Xin Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wang Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yang Liu
- Department of Pharmacy, NO.971 Hospital of the People's Liberation Army Navy, 22 Minjiang Road, Qingdao, Shandong, 266071, China
| | - Xiaoqing Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Qiao Shi
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Wanzhen Yang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Jie Tu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Yan Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Na Liu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Wang T, Yang W, Liu Y, Li W, Wang Y, Liu N, Sheng C. Jumonji Histone Demethylase Inhibitor JIB-04 as a Broad-Spectrum Antifungal Agent. ACS Infect Dis 2022; 8:1316-1323. [PMID: 35695031 DOI: 10.1021/acsinfecdis.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive fungal infections are emerging as a global public health problem. The lack of effective antifungal drugs is the bottleneck of clinical antifungal treatment. To identify novel antifungal agents with new mechanisms of action, JIB-04, a Jumonji histone demethylase inhibitor, was identified to possess broad-spectrum antifungal activity by a cell-based screen. Particularly, JIB-04 effectively inhibited Jumonji demethylase activity and ergosterol biosynthesis of Cryptococcus neoformans cells, leading to in vitro and in vivo anti-Cryptococcus activity. It also significantly inhibited the virulence factors of C. neoformans including biofilm, melanin, capsule, and surface hydrophobicity. Thus, JIB-04 was validated as a potent antifungal agent for the treatment of cryptococcal meningitis and Jumonji histone demethylase was preliminarily identified as a potential target for the development of novel antifungal therapeutics.
Collapse
Affiliation(s)
- Tianyou Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.,Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wang Li
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
The Lysine Demethylases KdmA and KdmB Differently Regulate Asexual Development, Stress Response, and Virulence in Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8060590. [PMID: 35736073 PMCID: PMC9225160 DOI: 10.3390/jof8060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Histone demethylases govern diverse cellular processes, including growth, development, and secondary metabolism. In the present study, we investigated the functions of two lysine demethylases, KdmA and KdmB, in the opportunistic human pathogenic fungus Aspergillus fumigatus. Experiments with mutants harboring deletions of genes encoding KdmA (ΔkdmA) and KdmB (ΔkdmB) showed that KdmA is necessary for normal growth and proper conidiation, whereas KdmB negatively regulates vegetative growth and conidiation. In both mutant strains, tolerance to H2O2 was significantly decreased, and the activities of both conidia-specific catalase (CatA) and mycelia-specific catalase (Cat1) were decreased. Both mutants had significantly increased sensitivity to the guanine nucleotide synthesis inhibitor 6-azauracil (6AU). The ΔkdmA mutant produced more gliotoxin (GT), but the virulence was not changed significantly in immunocompromised mice. In contrast, the production of GT and virulence were markedly reduced by the loss of kdmB. Comparative transcriptomic analyses revealed that the expression levels of developmental process-related genes and antioxidant activity-related genes were downregulated in both mutants. Taken together, we concluded that KdmA and KdmB have opposite roles in vegetative growth, asexual sporulation, and GT production. However, the two proteins were equally important for the development of resistance to 6AU.
Collapse
|
4
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Separovich RJ, Wong MWM, Chapman TR, Slavich E, Hamey JJ, Wilkins MR. Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential. J Biol Chem 2021; 296:100192. [PMID: 33334889 PMCID: PMC7948420 DOI: 10.1074/jbc.ra120.015995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Histone methylation is central to the regulation of eukaryotic transcription. In Saccharomyces cerevisiae, it is controlled by a system of four methyltransferases (Set1p, Set2p, Set5p, and Dot1p) and four demethylases (Jhd1p, Jhd2p, Rph1p, and Gis1p). While the histone targets for these enzymes are well characterized, the connection of the enzymes with the intracellular signaling network and thus their regulation is poorly understood; this also applies to all other eukaryotes. Here we report the detailed characterization of the eight S. cerevisiae enzymes and show that they carry a total of 75 phosphorylation sites, 92 acetylation sites, and two ubiquitination sites. All enzymes are subject to phosphorylation, although demethylases Jhd1p and Jhd2p contained one and five sites respectively, whereas other enzymes carried 14 to 36 sites. Phosphorylation was absent or underrepresented on catalytic and other domains but strongly enriched for regions of disorder on methyltransferases, suggesting a role in the modulation of protein-protein interactions. Through mutagenesis studies, we show that phosphosites within the acidic and disordered N-terminus of Set2p affect H3K36 methylation levels in vivo, illustrating the functional importance of such sites. While most kinases upstream of the yeast histone methylation enzymes remain unknown, we model the possible connections between the cellular signaling network and the histone-based gene regulatory system and propose an integrated regulatory structure. Our results provide a foundation for future, detailed exploration of the role of specific kinases and phosphosites in the regulation of histone methylation.
Collapse
Affiliation(s)
- Ryan J Separovich
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mandy W M Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tyler R Chapman
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eve Slavich
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Lerner AM, Hepperla AJ, Keele GR, Meriesh HA, Yumerefendi H, Restrepo D, Zimmerman S, Bear JE, Kuhlman B, Davis IJ, Strahl BD. An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation. Genome Res 2020; 30:1605-1617. [PMID: 33020206 PMCID: PMC7605256 DOI: 10.1101/gr.264283.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022]
Abstract
Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification associated with transcription and DNA repair. Although the effects of H3K36 methylation have been studied, the genome-wide dynamics of H3K36me deposition and removal are not known. We established rapid and reversible optogenetic control for Set2, the sole H3K36 methyltransferase in yeast, by fusing the enzyme with the light-activated nuclear shuttle (LANS) domain. Light activation resulted in efficient Set2-LANS nuclear localization followed by H3K36me3 deposition in vivo, with total H3K36me3 levels correlating with RNA abundance. Although genes showed disparate levels of H3K36 methylation, relative rates of H3K36me3 accumulation were largely linear and consistent across genes, suggesting that H3K36me3 deposition occurs in a directed fashion on all transcribed genes regardless of their overall transcription frequency. Removal of H3K36me3 was highly dependent on the demethylase Rph1. However, the per-gene rate of H3K36me3 loss weakly correlated with RNA abundance and followed exponential decay, suggesting H3K36 demethylases act in a global, stochastic manner. Altogether, these data provide a detailed temporal view of H3K36 methylation and demethylation that suggests transcription-dependent and -independent mechanisms for H3K36me deposition and removal, respectively.
Collapse
Affiliation(s)
- Andrew M Lerner
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Austin J Hepperla
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Hashem A Meriesh
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York 10965, USA
| | - David Restrepo
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Seth Zimmerman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ian J Davis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
7
|
Batie M, Frost J, Frost M, Wilson JW, Schofield P, Rocha S. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 2019; 363:1222-1226. [DOI: 10.1126/science.aau5870] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/05/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the life of most multicellular organisms. Cells possess enzymes called molecular dioxygenases that depend on oxygen for activity. A subclass of molecular dioxygenases is the histone demethylase enzymes, which are characterized by the presence of a Jumanji-C (JmjC) domain. Hypoxia can alter chromatin, but whether this is a direct effect on JmjC-histone demethylases or due to other mechanisms is unknown. Here, we report that hypoxia induces a rapid and hypoxia-inducible factor–independent induction of histone methylation in a range of human cultured cells. Genomic locations of histone-3 lysine-4 trimethylation (H3K4me3) and H3K36me3 after a brief exposure of cultured cells to hypoxia predict the cell’s transcriptional response several hours later. We show that inactivation of one of the JmjC-containing enzymes, lysine demethylase 5A (KDM5A), mimics hypoxia-induced cellular responses. These results demonstrate that oxygen sensing by chromatin occurs via JmjC-histone demethylase inhibition.
Collapse
|
8
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
9
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
10
|
Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 2015; 96:839-60. [PMID: 25712266 PMCID: PMC4949671 DOI: 10.1111/mmi.12977] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that – in submerged early and late cultures – between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low‐density visible light on solid medium. Although KdmA acts as transcriptional co‐repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Agnieszka Gacek-Matthews
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, 3010, Australia
| | - Clemens Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Campus Muthgasse, Vienna, A-1190, Austria
| | - Harald Berger
- Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA Tulln, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria.,Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | | |
Collapse
|
11
|
The histone demethylase activity of Rph1 is not essential for its role in the transcriptional response to nutrient signaling. PLoS One 2014; 9:e95078. [PMID: 24999627 PMCID: PMC4085034 DOI: 10.1371/journal.pone.0095078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/21/2014] [Indexed: 12/22/2022] Open
Abstract
Rph1 and Gis1 are two related yeast zinc finger proteins that function as downstream effectors in the Ras/PKA, TOR and Sch9 nutrient signaling pathways. Both proteins also contain JmjC histone demethylase domains, but only Rph1 is known to be an active enzyme, demethylating lysine 36 of histone H3. We have studied to what extent the demethylase activity of Rph1 contributes to its role in nutrient signaling by performing gene expression microarray experiments on a yeast strain containing a catalytically inactive allele of RPH1. We find that the enzymatic activity of Rph1 is not essential for its role in growth phase dependent gene regulation. However, the ability of Rph1 to both activate and repress transcription is partially impaired in the active site mutant, indicating that the demethylase activity may enhance its function in vivo. Consistent with this, we find that the Rph1 mutation and a deletion of the histone H3 methylase Set2 affect the same target genes in opposite directions. Genes that are differentially expressed in the Rph1 mutant are also enriched for binding of Rpd3, a downstream effector in silencing, to their promoters. The expression of some subtelomeric genes and genes involved in sporulation and meiosis are also affected by the mutation, suggesting a role for Rph1-dependent demethylation in regulating these genes. A small set of genes are more strongly affected by the active site mutation, indicating a more pronounced role for the demethylase activity in their regulation by Rph1.
Collapse
|
12
|
Uberto R, Moomaw EW. Protein similarity networks reveal relationships among sequence, structure, and function within the Cupin superfamily. PLoS One 2013; 8:e74477. [PMID: 24040257 PMCID: PMC3765361 DOI: 10.1371/journal.pone.0074477] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
The cupin superfamily is extremely diverse and includes catalytically inactive seed storage proteins, sugar-binding metal-independent epimerases, and metal-dependent enzymes possessing dioxygenase, decarboxylase, and other activities. Although numerous proteins of this superfamily have been structurally characterized, the functions of many of them have not been experimentally determined. We report the first use of protein similarity networks (PSNs) to visualize trends of sequence and structure in order to make functional inferences in this remarkably diverse superfamily. PSNs provide a way to visualize relatedness of structure and sequence among a given set of proteins. Structure- and sequence-based clustering of cupin members reflects functional clustering. Networks based only on cupin domains and networks based on the whole proteins provide complementary information. Domain-clustering supports phylogenetic conclusions that the N- and C-terminal domains of bicupin proteins evolved independently. Interestingly, although many functionally similar enzymatic cupin members bind the same active site metal ion, the structure and sequence clustering does not correlate with the identity of the bound metal. It is anticipated that the application of PSNs to this superfamily will inform experimental work and influence the functional annotation of databases.
Collapse
Affiliation(s)
- Richard Uberto
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Ellen W. Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Liang CY, Wang LC, Lo WS. Dissociation of the H3K36 demethylase Rph1 from chromatin mediates derepression of environmental stress-response genes under genotoxic stress in Saccharomyces cerevisiae. Mol Biol Cell 2013; 24:3251-62. [PMID: 23985319 PMCID: PMC3806659 DOI: 10.1091/mbc.e12-11-0820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The H3K36 demethylase Rph1 is a transcriptional repressor for stress-responsive genes in yeast. Rph1-mediated transcriptional repression is relieved by phosphorylation of Rph1, reduced Rph1 level, and dissociation of Rph1 from chromatin with genotoxic stress. Rph1 may function as a regulatory node in different stress-signaling pathways. Cells respond to environmental signals by altering gene expression through transcription factors. Rph1 is a histone demethylase containing a Jumonji C (JmjC) domain and belongs to the C2H2 zinc-finger protein family. Here we investigate the regulatory network of Rph1 in yeast by expression microarray analysis. More than 75% of Rph1-regulated genes showed increased expression in the rph1-deletion mutant, suggesting that Rph1 is mainly a transcriptional repressor. The binding motif 5′-CCCCTWA-3′, which resembles the stress response element, is overrepresented in the promoters of Rph1-repressed genes. A significant proportion of Rph1-regulated genes respond to DNA damage and environmental stress. Rph1 is a labile protein, and Rad53 negatively modulates Rph1 protein level. We find that the JmjN domain is important in maintaining protein stability and the repressive effect of Rph1. Rph1 is directly associated with the promoter region of targeted genes and dissociated from chromatin before transcriptional derepression on DNA damage and oxidative stress. Of interest, the master stress-activated regulator Msn2 also regulates a subset of Rph1-repressed genes under oxidative stress. Our findings confirm the regulatory role of Rph1 as a transcriptional repressor and reveal that Rph1 might be a regulatory node connecting different signaling pathways responding to environmental stresses.
Collapse
Affiliation(s)
- Chung-Yi Liang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | |
Collapse
|
14
|
Tao Y, Wu M, Zhou X, Yin W, Hu B, de Crombrugghe B, Sinha KM, Zang J. Structural insights into histone demethylase NO66 in interaction with osteoblast-specific transcription factor osterix and gene repression. J Biol Chem 2013; 288:16430-16437. [PMID: 23620590 PMCID: PMC3675579 DOI: 10.1074/jbc.m112.446849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/22/2013] [Indexed: 11/06/2022] Open
Abstract
Osterix (Osx) is an osteoblast-specific transcriptional factor and is required for osteoblast differentiation and bone formation. A JmjC domain-containing protein NO66 was previously found to participate in regulation of Osx transcriptional activity and plays an important role in osteoblast differentiation through interaction with Osx. Here, we report the crystal structure of NO66 forming in a functional tetramer. A hinge domain links the N-terminal JmjC domain and C-terminal winged helix-turn-helix domain of NO66, and both domains are essential for tetrameric assembly. The oligomerization interface of NO66 interacts with a conserved fragment of Osx. We show that the hinge domain-dependent oligomerization of NO66 is essential for inhibition of Osx-dependent gene activation. Our findings suggest that homo-oligomerization of JmjC domain containing proteins might play a physiological role through interactions with other regulatory factors during gene expression.
Collapse
Affiliation(s)
- Yue Tao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Minhao Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Xing Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Wu Yin
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Bin Hu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | | | - Krishna M Sinha
- Endocrine Neoplasia and Hormonal Disorders, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
15
|
Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Metallomics 2013; 5:287-301. [PMID: 23446356 PMCID: PMC4109655 DOI: 10.1039/c3mt20153h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Fe(ii)/αketoglutarate (αKG) dependent oxygenases catalyze a diverse range of reactions significant in biological processes such as antibiotic biosynthesis, lipid metabolism, oxygen sensing, and DNA and RNA repair. Although functionally diverse, the eight-stranded β-barrel (cupin) and HX(D/E)XnH facial triad motifs are conserved in this super-family of enzymes. Crystal structure analysis of 25 αKG oxygenases reveals two stereoisomers of the Fe cofactor, Anti and Clock, which differ in the relative position of the exchangeable ligand position and the primary substrate. Herein, we discuss the relationship between the chemical mechanism and the secondary coordination sphere of the αKG oxygenases, within the constraints of the stereochemistry of the Fe cofactor. Sequence analysis of the cupin barrel indicates that a small subset of positions constitute the second coordination sphere, which has significant ramifications for the structure of the ferryl intermediate. The competence of both Anti and Clock stereoisomers of Fe points to a ferryl intermediate that is 5 coordinate. The small number of conserved close contacts within the active sites of αKG oxygenases can be extended to chemically related enzymes, such as the αKG-dependent halogenases SyrB2 and CytC3, and the non-αKG dependent dioxygenases isopenicillin N synthase (IPNS) and cysteine dioxygenase (CDO).
Collapse
Affiliation(s)
- John A. Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Meaghan A. Valliere
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
16
|
Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet 2013; 9:e1003239. [PMID: 23357881 PMCID: PMC3554631 DOI: 10.1371/journal.pgen.1003239] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/27/2012] [Indexed: 01/07/2023] Open
Abstract
Histone lysine methylation is an important epigenetic modification in regulating chromatin structure and gene expression. Histone H3 lysine 4 methylation (H3K4me), which can be in a mono-, di-, or trimethylated state, has been shown to play an important role in gene expression involved in plant developmental control and stress adaptation. However, the resetting mechanism of this epigenetic modification is not yet fully understood. In this work, we identified a JmjC domain-containing protein, JMJ703, as a histone lysine demethylase that specifically reverses all three forms of H3K4me in rice. Loss-of-function mutation of the gene affected stem elongation and plant growth, which may be related to increased expression of cytokinin oxidase genes in the mutant. Analysis of crystal structure of the catalytic core domain (c-JMJ703) of the protein revealed a general structural similarity with mammalian and yeast JMJD2 proteins that are H3K9 and H3K36 demethylases. However, several specific features were observed in the structure of c-JMJ703. Key residues that interact with cofactors Fe(II) and N-oxalylglycine and the methylated H3K4 substrate peptide were identified and were shown to be essential for the demethylase activity in vivo. Several key residues are specifically conserved in known H3K4 demethylases, suggesting that they may be involved in the specificity for H3K4 demethylation.
Collapse
|
17
|
Orzechowski Westholm J, Tronnersjö S, Nordberg N, Olsson I, Komorowski J, Ronne H. Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells. PLoS One 2012; 7:e31577. [PMID: 22363679 PMCID: PMC3283669 DOI: 10.1371/journal.pone.0031577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 01/09/2012] [Indexed: 01/10/2023] Open
Abstract
Aging in organisms as diverse as yeast, nematodes, and mammals is delayed by caloric restriction, an effect mediated by the nutrient sensing TOR, RAS/cAMP, and AKT/Sch9 pathways. The transcription factor Gis1 functions downstream of these pathways in extending the lifespan of nutrient restricted yeast cells, but the mechanisms involved are still poorly understood. We have used gene expression microarrays to study the targets of Gis1 and the related protein Rph1 in different growth phases. Our results show that Gis1 and Rph1 act both as repressors and activators, on overlapping sets of genes as well as on distinct targets. Interestingly, both the activities and the target specificities of Gis1 and Rph1 depend on the growth phase. Thus, both proteins are associated with repression during exponential growth, targeting genes with STRE or PDS motifs in their promoters. After the diauxic shift, both become involved in activation, with Gis1 acting primarily on genes with PDS motifs, and Rph1 on genes with STRE motifs. Significantly, Gis1 and Rph1 control a number of genes involved in acetate and glycerol formation, metabolites that have been implicated in aging. Furthermore, several genes involved in acetyl-CoA metabolism are downregulated by Gis1.
Collapse
Affiliation(s)
- Jakub Orzechowski Westholm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Susanna Tronnersjö
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Niklas Nordberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Olsson
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hans Ronne
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
18
|
Quan Z, Oliver SG, Zhang N. JmjN interacts with JmjC to ensure selective proteolysis of Gis1 by the proteasome. MICROBIOLOGY (READING, ENGLAND) 2011; 157:2694-2701. [PMID: 21680636 DOI: 10.1099/mic.0.048199-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A group of JmjC domain-containing proteins also harbour JmjN domains. Although the JmjC domain is known to possess histone demethylase activity, the function of the JmjN domain remains largely undetermined. Previously, we have demonstrated that the yeast Gis1 transcription factor, bearing both JmjN and JmjC domains at its N terminus, is subject to proteasome-mediated selective proteolysis to downregulate its transcription activation ability. Here, we reveal that the JmjN and JmjC domains interact with each other through two β-sheets, one in each domain. Removal of either or both β-strands or the entire JmjN domain leads to complete degradation of Gis1, mediated partially by the proteasome. Mutating the core residues essential for histone demethylase activity demonstrated for other JmjC-containing proteins or deleting both Jumonji domains enhances the transcription activity of Gis1, but has no impact on its selective proteolysis by the proteasome. Together, these data suggest that JmjN and JmjC interact physically to form a structural unit that ensures the stability and appropriate transcription activity of Gis1.
Collapse
Affiliation(s)
- Zhenzhen Quan
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|