1
|
Layec G, Gifford JR, Trinity JD, Hart CR, Garten RS, Park SY, Le Fur Y, Jeong EK, Richardson RS. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function. Am J Physiol Endocrinol Metab 2016; 311:E358-66. [PMID: 27302751 PMCID: PMC5005269 DOI: 10.1152/ajpendo.00028.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Song Y Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, Centre national de la recherche scientifique, Center for Magnetic Resonance in Biology and Medicine, Unité Mixte de Recherche 7339, Marseille, France
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
2
|
Bagur R, Tanguy S, Foriel S, Grichine A, Sanchez C, Pernet-Gallay K, Kaambre T, Kuznetsov AV, Usson Y, Boucher F, Guzun R. The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1159-71. [PMID: 26976332 DOI: 10.1016/j.bbadis.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
Cardiac ischemia-reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation (OxPhos) and compartmentalized intracellular energy transfer via the phosphocreatine/creatine kinase (CK) network. The restriction of ATP/ADP diffusion at the level of the mitochondrial outer membrane (MOM) is an essential element of compartmentalized energy transfer. In adult cardiomyocytes, the MOM permeability to ADP is regulated by the interaction of voltage-dependent anion channel with cytoskeletal proteins, particularly with β tubulin II. The IR-injury alters the expression and the intracellular arrangement of cytoskeletal proteins. The objective of the present study was to investigate the impact of IR on the intracellular arrangement of β tubulin II and its effect on the regulation of mitochondrial respiration. Perfused rat hearts were subjected to total ischemia (for 20min (I20) and 45min (I45)) or to ischemia followed by 30min of reperfusion (I20R and I45R groups). High resolution respirometry and fluorescent confocal microscopy were used to study respiration, β tubulin II and mitochondrial arrangements in cardiac fibers. The results of these experiments evidence a heterogeneous response of mitochondria to IR-induced damage. Moreover, the intracellular rearrangement of β tubulin II, which in the control group colocalized with mitochondria, was associated with increased apparent affinity of OxPhos for ADP, decreased regulation of respiration by creatine without altering mitochondrial CK activity and the ratio between octameric to dimeric isoenzymes. The results of this study allow us to highlight changes of mitochondrial interactions with cytoskeleton as one of the possible mechanisms underlying cardiac IR injury.
Collapse
Affiliation(s)
- Rafaela Bagur
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France; University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Stéphane Tanguy
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Sarah Foriel
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France
| | - Alexei Grichine
- University Grenoble Alpes, Life Science Imaging - In Vitro Platform, IAB, INSERM CRI U823, Grenoble, France
| | - Caroline Sanchez
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Karin Pernet-Gallay
- INSERM, U836, F-38000, Grenoble, France; University Grenoble Alpes, GIN, F-38000 Grenoble, France
| | - Tuuli Kaambre
- National Institute of Chemical Physics and Biophysics, Laboratory of Bioenergetics, Tallinn, Estonia
| | - Andrey V Kuznetsov
- Innsbruck Medical University, Cardiac Surgery Research Laboratory, Innsbruck A-6020, Austria
| | - Yves Usson
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - François Boucher
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Rita Guzun
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France; Hospital of the University Grenoble Alpes, Department Thorax (EFCR), France.
| |
Collapse
|
3
|
Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:232-45. [PMID: 24189374 DOI: 10.1016/j.bbabio.2013.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/28/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, βII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).
Collapse
|
4
|
Abstract
A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Christopher G R Perry
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
5
|
Boushel R, Saltin B. Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise. Int J Biochem Cell Biol 2012; 45:68-75. [PMID: 23032701 DOI: 10.1016/j.biocel.2012.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/13/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Muscle mitochondrial respiratory capacity measured ex vivo provides a physiological reference to assess cellular oxidative capacity as a component in the oxygen cascade in vivo. In this article, the magnitude of muscle blood flow and oxygen uptake during exercise involving a small-to-large fraction of the body mass will be discussed in relation to mitochondrial capacity measured ex vivo. These analyses reveal that as the mass of muscle engaged in exercise increases from one-leg knee extension, to 2-arm cranking, to 2-leg cycling and x-country skiing, the magnitude of blood flow and oxygen delivery decrease. Accordingly, a 2-fold higher oxygen delivery and oxygen uptake per unit muscle mass are seen in vivo during 1-leg exercise compared to 2-leg cycling indicating a significant limitation of the circulation during exercise with a large muscle mass. This analysis also reveals that mitochondrial capacity measured ex vivo underestimates the maximal in vivo oxygen uptake of muscle by up to ∼2-fold. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Robert Boushel
- Heart & Circulatory Section, Department of Biomedical Sciences, Department of Anaesthesia, Bispebjerg Hospital, University of Copenhagen, Denmark.
| | | |
Collapse
|
6
|
Perry CGR, Kane DA, Herbst EAF, Mukai K, Lark DS, Wright DC, Heigenhauser GJF, Neufer PD, Spriet LL, Holloway GP. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. J Physiol 2012; 590:5475-86. [PMID: 22907058 DOI: 10.1113/jphysiol.2012.234682] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Energy transfer between mitochondrial and cytosolic compartments is predominantly achieved by creatine-dependent phosphate shuttling (PCr/Cr) involving mitochondrial creatine kinase (miCK). However, ADP/ATP diffusion through adenine nucleotide translocase (ANT) and voltage-dependent anion carriers (VDACs) is also involved in this process. To determine if exercise alters the regulation of this system, ADP-stimulated mitochondrial respiratory kinetics were assessed in permeabilized muscle fibre bundles (PmFBs) taken from biopsies before and after 2 h of cycling exercise (60% ) in nine lean males. Concentrations of creatine (Cr) and phosphocreatine (PCr) as well as the contractile state of PmFBs were manipulated in situ. In the absence of contractile signals (relaxed PmFBs) and miCK activity (no Cr), post-exercise respiratory sensitivity to ADP was reduced in situ (up to 126% higher apparent K(m) to ADP) suggesting inhibition of ADP/ATP diffusion between matrix and cytosolic compartments (possibly ANT and VDACs). However this effect was masked in the presence of saturating Cr (no effect of exercise on ADP sensitivity). Given that the role of ANT is thought to be independent of Cr, these findings suggest ADP/ATP, but not PCr/Cr, cycling through the outer mitochondrial membrane (VDACs) may be attenuated in resting muscle after exercise. In contrast, in contracted PmFBs, post-exercise respiratory sensitivity to ADP increased with miCK activation (saturating Cr; 33% lower apparent K(m) to ADP), suggesting prior exercise increases miCK sensitivity in situ. These observations demonstrate that exercise increases miCK-dependent respiratory sensitivity to ADP, promoting mitochondrial-cytosolic energy exchange via PCr/Cr cycling, possibly through VDACs. This effect may mask an underlying inhibition of Cr-independent ADP/ATP diffusion. This enhanced regulation of miCK-dependent phosphate shuttling may improve energy homeostasis through more efficient coupling of oxidative phosphorylation to perturbations in cellular energy charge during subsequent bouts of contraction.
Collapse
Affiliation(s)
- Christopher G R Perry
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|