1
|
Seidler UE. The enigmatic SLC26A6 multifunctional anion transporter: recent advances in structure-function relationship, pathophysiological significance and novel pharmacological inhibitors. Front Pharmacol 2025; 15:1536864. [PMID: 39949394 PMCID: PMC11821980 DOI: 10.3389/fphar.2024.1536864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
SLC26A6, a member of the SLC26 family of multifunctional anion transporters, has been particularly enigmatic because of its multiple modes of transport, its expression in organs that are difficult to study physiologically, and the lack of specific antibodies and inhibitors. This has recently changed. SLC26A6 is expressed in the human pancreas, kidney, intestine, heart and some other organs and is involved in fluid absorption, anion secretion, regulation of intracellular pH and elimination of waste products such as oxalate. This review will focus on three topics: Firstly, a molecular structure of human SLC26A6 has recently been obtained by cryo-electron microscopy. Structure-function studies of the reconstituted SLC26A6 in proteoliposomes suggested a 1:1 stoichiometry, resulting in electroneutral Cl-/HCO3 - exchange and electrogenic Cl-/oxalate2- exchange. How do these data help to understand the published functional studies? Secondly, whole exon sequencing of a kidney stone cohort from the United Kingdom database revealed a dominant negative SLC26A6 mutation in a patient with enteric hyperoxaluria, oxalate kidney stones and a low calcium diet. How does this finding fit with previous genetic studies in mice and humans of SLC26A6 gene mutations? Thirdly, progress has been made in identifying specific inhibitors for SLC26A6. Where might this be of clinical relevance?
Collapse
Affiliation(s)
- Ursula E. Seidler
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
2
|
Progress in understanding the structural mechanism underlying prestin's electromotile activity. Hear Res 2021; 423:108423. [PMID: 34987017 DOI: 10.1016/j.heares.2021.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022]
Abstract
Prestin (SLC26A5), a member of the SLC26 transporter family, is the molecular actuator that drives OHC electromotility (eM). A wealth of biophysical data indicates that eM is mediated by an area motor mechanism, in which prestin molecules act as elementary actuators by changing their area in the membrane in response to changes in membrane potential. The area changes of a large and densely packed population of prestin molecules sum up, resulting in macroscopic cellular movement. At the single protein level, this model implies major voltage-driven conformational rearrangements. However, the nature of these structural dynamics remained unknown. A main obstacle in elucidating the eM mechanism has been the lack of structural information about SLC26 transporters. The recent emergence of several high-resolution cryo-EM structures of prestin as well as other SLC26 transporter family members now provides a reliable picture of prestin's molecular architecture. Thus, SLC26 transporters including prestin generally are dimers, and each protomer is folded according to a 7+7 transmembrane domain inverted repeat (7TMIR) architecture. Here, we review these structural findings and discuss insights into a potential molecular mechanism. Most important, distinct conformations were observed when purifying and imaging prestin bound to either its physiological ligand, chloride, or to competitively inhibitory anions, sulfate or salicylate. Despite differences in detail, these structural snapshots indicate that the conformational landscape of prestin includes rearrangements between the two major domains of prestin's transmembrane region (TMD), core and scaffold ('gate') domains. Notably, distinct conformations differ in the area the TMD occupies in the membrane and in their impact on the immediate lipid environment. Both effects can contribute to generate membrane deformation and thus may underly electromotility. Further functional studies will be necessary to determine whether these or similar structural rearrangements are driven by membrane potential to mediate piezoelectric activity. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
3
|
Moy BE, Seshu J. STAS Domain Only Proteins in Bacterial Gene Regulation. Front Cell Infect Microbiol 2021; 11:679982. [PMID: 34235094 PMCID: PMC8256260 DOI: 10.3389/fcimb.2021.679982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023] Open
Abstract
Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as part of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in eubacteria, initially described as part of the Bacillus subtilis Regulation of Sigma B (RSB) regulatory system. Since their description in B. subtilis, SDoPs have been described to be involved in the regulation of sigma factors, through partner-switching mechanisms in various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio. fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis. This is of great interest as these proteins are highly conserved, and often involved in altering gene expression in response to changes in environmental conditions. For many of the bacteria we will examine in this review, the ability to sense environmental changes and alter gene expression accordingly is critical for survival and colonization of susceptible hosts.
Collapse
Affiliation(s)
- Brian E Moy
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Wang C, Sun B, Zhang X, Huang X, Zhang M, Guo H, Chen X, Huang F, Chen T, Mi H, Yu F, Liu LN, Zhang P. Structural mechanism of the active bicarbonate transporter from cyanobacteria. NATURE PLANTS 2019; 5:1184-1193. [PMID: 31712753 DOI: 10.1038/s41477-019-0538-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/27/2019] [Indexed: 05/11/2023]
Abstract
Bicarbonate transporters play essential roles in pH homeostasis in mammals and photosynthesis in aquatic photoautotrophs. A number of bicarbonate transporters have been characterized, among which is BicA-a low-affinity, high-flux SLC26-family bicarbonate transporter involved in cyanobacterial CO2-concentrating mechanisms (CCMs) that accumulate CO2 and improve photosynthetic carbon fixation. Here, we report the three-dimensional structure of BicA from Synechocystis sp. PCC6803. Crystal structures of the transmembrane domain (BicATM) and the cytoplasmic STAS domain (BicASTAS) of BicA were solved. BicATM was captured in an inward-facing HCO3--bound conformation and adopts a '7+7' fold monomer. HCO3- binds to a cytoplasm-facing hydrophilic pocket within the membrane. BicASTAS is assembled as a compact homodimer structure and is required for the dimerization of BicA. The dimeric structure of BicA was further analysed using cryo-electron microscopy and physiological analysis of the full-length BicA, and may represent the physiological unit of SLC26-family transporters. Comparing the BicATM structure with the outward-facing transmembrane domain structures of other bicarbonate transporters suggests an elevator transport mechanism that is applicable to the SLC26/4 family of sodium-dependent bicarbonate transporters. This study advances our knowledge of the structures and functions of cyanobacterial bicarbonate transporters, and will inform strategies for bioengineering functional BicA in heterologous organisms to increase assimilation of CO2.
Collapse
Affiliation(s)
- Chengcheng Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhua Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Taiyu Chen
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Yu
- Shanghai Key Laboratory of Plant Molecualr Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Jewell JB, Tanaka K. Transcriptomic perspective on extracellular ATP signaling: a few curious trifles. PLANT SIGNALING & BEHAVIOR 2019; 14:1659079. [PMID: 31451022 PMCID: PMC6804718 DOI: 10.1080/15592324.2019.1659079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 05/24/2023]
Abstract
Extracellular ATP is perceived by the purinoceptor P2K1, leading to induction of defense response in plants. Previously, we described the transcriptomic response to extracellular ATP in wild-type Arabidopsis seedlings and mutants of classical defense hormone signaling pathways (Jewell et al., 2019, Plant Physiol. 179: 1144-58), in which extracellular ATP was found to induce defense-related genes independently and also along with other defense signaling pathways. In the present study, we provide further analysis and discussion of the data that we neglected to describe in the previous transcriptomics report. Briefly, we describe transcriptomic differences between a P2K1 knockout mutant (dorn1) and wild-type seedlings in the absence of exogenous ATP as well as an analysis of genes more responsive to extracellular ATP in a P2K1 overexpression line. Finally, we describe an exaggerated response to extracellular ATP in the ein2 mutant and suggest testable explanations of this phenomenon.
Collapse
Affiliation(s)
- Jeremy B. Jewell
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Walter JD, Sawicka M, Dutzler R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 2019; 8:46986. [PMID: 31339488 PMCID: PMC6656431 DOI: 10.7554/elife.46986] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
The epithelial anion transporter SLC26A9 contributes to airway surface hydration and gastric acid production. Colocalizing with CFTR, SLC26A9 has been proposed as a target for the treatment of cystic fibrosis. To provide molecular details of its transport mechanism, we present cryo-EM structures and a functional characterization of murine Slc26a9. These structures define the general architecture of eukaryotic SLC26 family members and reveal an unusual mode of oligomerization which relies predominantly on the cytosolic STAS domain. Our data illustrates conformational transitions of Slc26a9, supporting a rapid alternate-access mechanism which mediates uncoupled chloride transport with negligible bicarbonate or sulfate permeability. The characterization of structure-guided mutants illuminates the properties of the ion transport path, including a selective anion binding site located in the center of a mobile module within the transmembrane domain. This study thus provides a structural foundation for the understanding of the entire SLC26 family and potentially facilitates their therapeutic exploitation. Many processes in the human body are regulated by chloride and other charged particles (known as ions) moving in and out of cells. Each cell is surrounded by a membrane barrier, which prevents ions from entering or exiting. Therefore, to control the levels of ions inside the cell, specific proteins in the membrane act as channels or transporters to provide routes for the ions to pass through the membrane. Channel proteins form pores that, when open, allow a steady stream of ions to pass through the membrane. Transporter proteins, on the other hand, generally contain a pocket that is only accessible from one side of the membrane. When individual ions enter this pocket the transporter changes shape. This causes the entrance of the pocket to close and then re-open on the other side of the membrane. Inside the lung, an ion channel known as CFTR provides a route for chloride ions to move out of cells, which helps clear harmful material from the airways. Mutations affecting this protein cause the mucus lining the airways to become very sticky, leading to a severe disease known as cystic fibrosis. CFTR works together with another protein that is also found in the membrane, called SLC26A9. Previous studies have suggested that SLC26A9 also allows chloride ions to pass through the membrane. It was not clear, however, if SLC26A9 operates as an ion channel or a transporter protein, or how the protein is arranged in the membrane. Now, Walter, Sawicka and Dutzler combined two techniques known as cryo-electron microscopy and patch-clamp electrophysiology to reveal the detailed three-dimensional structure of the mouse version of SLC26A9, which is highly similar to the human form. The experiments found that mouse SLC26A9 proteins form pairs in the membrane referred to as homodimers, which arranged themselves in an unexpected way. Further investigation into the structure of these homodimers suggests that despite having many channel-like properties, SLC26A9 operates as a fast transporter, rather than a true channel. These findings help us understand the role of SLC26A9 and other similar proteins in the lung and other parts of the body. In the future it may be possible to develop drugs that target SLC26A9 to treat cystic fibrosis and other severe lung diseases.
Collapse
Affiliation(s)
- Justin D Walter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Chang YN, Jaumann EA, Reichel K, Hartmann J, Oliver D, Hummer G, Joseph B, Geertsma ER. Structural basis for functional interactions in dimers of SLC26 transporters. Nat Commun 2019; 10:2032. [PMID: 31048734 PMCID: PMC6497670 DOI: 10.1038/s41467-019-10001-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers.
Collapse
Affiliation(s)
- Yung-Ning Chang
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Katrin Reichel
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Julia Hartmann
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University, 35037, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Philipps University, GRK 2213, Philipps, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany. .,Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 1, 60438, Frankfurt am Main, Germany.
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany. .,Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 1, 60438, Frankfurt am Main, Germany.
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Karinou E, Hoskisson PA, Strecker A, Unden G, Javelle A. The E. coli dicarboxylic acid transporters DauA act as a signal transducer by interacting with the DctA uptake system. Sci Rep 2017; 7:16331. [PMID: 29180752 PMCID: PMC5703999 DOI: 10.1038/s41598-017-16578-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/14/2017] [Indexed: 11/09/2022] Open
Abstract
The Slc26A/SulP family of ions transporter is ubiquitous and widpsread in all kingdon of life. In E. coli, we have demonstrated that the Slc26 protein DauA is a C4-dicarboxilic acids (C4-diC) transporter active at acidic pH. The main C4-diC transporter active at pH7 is DctA and is induced by C4-diC via the DcuS/R two component system. DctA interacts with DcuS, the membrane embedded histidine kinase, to transfers DcuS to the responsive state, i.e. in the absence of DctA, DcuS is permanently "on", but its activity is C4-diC-dependent when in complex with DctA. Using phenotypic characterization, transport assays and protein expression studies, we show that at pH7 full DctA production depends on the presence of DauA. A Bacterial Two Hybrid system indicates that DauA and the sensor complex DctA/DcuS physically interact at the membrane. Pull down experiments completed by co-purification study prove that DauA and DctA interact physically at the membrane. These data open a completely new aspect of the C4-diC metabolism in E. coli and reveals how the bacterial Slc26A uptake systems participate in multiple cellular functions. This constitutes a new example of a bacterial transporter that acts as a processor in a transduction pathway.
Collapse
Affiliation(s)
- Eleni Karinou
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Alexander Strecker
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Johannes Gutenberg-University, Mainz, Germany
| | - Arnaud Javelle
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK. .,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
9
|
Chang YN, Geertsma ER. The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 2017; 398:165-174. [PMID: 27865089 DOI: 10.1515/hsz-2016-0254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Solute carriers from the SLC4, SLC23, and SLC26 families are involved in pH regulation, vitamin C transport and ion homeostasis. While these families do not share any obvious sequence relationship, they are united by their unique and novel architecture. Each member of this structural class is organized into two structurally related halves of seven transmembrane segments each. These halves span the membrane with opposite orientations and form an intricately intertwined structure of two inverted repeats. This review highlights the general design principles of this fold and reveals the diversity between the different families. We discuss their domain architecture, structural framework and transport mode and detail an initial transport mechanism for this fold inferred from the recently solved structures of different members.
Collapse
|
10
|
Abstract
In a recent paper published in the Biochemical Journal, Lolli et al. presented evidence that the C-terminal STAS (sulfate transporter and anti-sigma factor antagonist) domain of the motor protein prestin possesses an anion-binding site. This discovery might shed light on an aspect of the function of this mysterious and fascinating protein that is crucial for the human hearing system.
Collapse
|
11
|
Gabel F. Applications of SANS to Study Membrane Protein Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:201-214. [DOI: 10.1007/978-981-10-6038-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Dunne O, Weidenhaupt M, Callow P, Martel A, Moulin M, Perkins SJ, Haertlein M, Forsyth VT. Matchout deuterium labelling of proteins for small-angle neutron scattering studies using prokaryotic and eukaryotic expression systems and high cell-density cultures. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:425-432. [PMID: 27844110 PMCID: PMC5486828 DOI: 10.1007/s00249-016-1186-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022]
Abstract
Small-angle neutron scattering (SANS) is a powerful technique for the characterisation of macromolecular structures and interactions. Its main advantage over other solution state approaches is the ability to use D2O/H2O solvent contrast variation to selectively match out specific parts of a multi-component system. While proteins, nucleic acids, and lipids are readily distinguished in this way, it is not possible to locate different parts of a protein–protein system without the introduction of additional contrast by selective deuteration. Here, we describe new methods by which ‘matchout labelled’ proteins can be produced using Escherichia coli and Pichia pastoris expression systems in high cell-density cultures. The method is designed to produce protein that has a scattering length density that is very close to that of 100% D2O, providing clear contrast when used with hydrogenated partner proteins in a complex. This allows the production of a single sample system for which SANS measurements at different solvent contrasts can be used to distinguish and model the hydrogenated component, the deuterated component, and the whole complex. The approach, which has significant cost advantages, has been extensively tested for both types of expression system.
Collapse
Affiliation(s)
- O Dunne
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.,Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - M Weidenhaupt
- University Grenoble Alpes, CNRS, LMGP, F-38000, Grenoble, France
| | - P Callow
- Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - A Martel
- Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - M Moulin
- Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - S J Perkins
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - M Haertlein
- Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - V T Forsyth
- Institut Laue Langevin, 71 avenue des Martyrs, 38042, Grenoble Cedex 9, France. .,Macromolecular Structure Group, Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
13
|
Coudray N, L Seyler S, Lasala R, Zhang Z, Clark KM, Dumont ME, Rohou A, Beckstein O, Stokes DL. Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 2016; 26:130-145. [PMID: 27717063 DOI: 10.1002/pro.3061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023]
Abstract
Bor1p is a secondary transporter in yeast that is responsible for boron transport. Bor1p belongs to the SLC4 family which controls bicarbonate exchange and pH regulation in animals as well as borate uptake in plants. The SLC4 family is more distantly related to members of the Amino acid-Polyamine-organoCation (APC) superfamily, which includes well studied transporters such as LeuT, Mhp1, AdiC, vSGLT, UraA, SLC26Dg. Their mechanism generally involves relative movements of two domains: a core domain that binds substrate and a gate domain that in many cases mediates dimerization. To shed light on conformational changes governing transport by the SLC4 family, we grew helical membrane crystals of Bor1p from Saccharomyces mikatae and determined a structure at ∼6 Å resolution using cryo-electron microscopy. To evaluate the conformation of Bor1p in these crystals, a homology model was built based on the related anion exchanger from red blood cells (AE1). This homology model was fitted to the cryo-EM density map using the Molecular Dynamics (MD) Flexible Fitting method and then relaxed by all-atom MD simulation in explicit solvent and membrane. Mapping of water accessibility indicates that the resulting structure represents an inward-facing conformation. Comparisons of the resulting Bor1p model with the X-ray structure of AE1 in an outward-facing conformation, together with MD simulations of inward-facing and outward-facing Bor1p models, suggest rigid body movements of the core domain relative to the gate domain. These movements are consistent with the rocking-bundle transport mechanism described for other members of the APC superfamily.
Collapse
Affiliation(s)
- Nicolas Coudray
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Sean L Seyler
- Department of Physics, Arizona State University, Tempe, Arizona, 85287
| | - Ralph Lasala
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Zhening Zhang
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| | - Kathy M Clark
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Mark E Dumont
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14652.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, 14652
| | - Alexis Rohou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Oliver Beckstein
- Department of Physics, Arizona State University, Tempe, Arizona, 85287.,Center for Biological Physics, Arizona State University, Tempe, Arizona, 85287
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, 10016
| |
Collapse
|
14
|
Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers. Proc Natl Acad Sci U S A 2016; 113:10542-6. [PMID: 27601653 DOI: 10.1073/pnas.1612603113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Boron is essential for plant growth because of its incorporation into plant cell walls; however, in excess it is toxic to plants. Boron transport and homeostasis in plants is regulated in part by the borate efflux transporter Bor1, a member of the solute carrier (SLC) 4 transporter family with homology to the human bicarbonate transporter Band 3. Here, we present the 4.1-Å resolution crystal structure of Arabidopsis thaliana Bor1. The structure displays a dimeric architecture in which dimerization is mediated by centralized Gate domains. Comparisons with a structure of Band 3 in an outward-open state reveal that the Core domains of Bor1 have rotated inwards to achieve an occluded state. Further structural comparisons with UapA, a xanthine transporter from the nucleobase-ascorbate transporter family, show that the downward pivoting of the Core domains relative to the Gate domains may access an inward-open state. These results suggest that the SLC4, SLC26, and nucleobase-ascorbate transporter families all share an elevator transport mechanism in which alternating access is provided by Core domains that carry substrates across a membrane.
Collapse
|
15
|
Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies. Biochem Biophys Rep 2016; 8:184-191. [PMID: 28955955 PMCID: PMC5613929 DOI: 10.1016/j.bbrep.2016.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Mutations in the human SLC26A4/Pendrin polypeptide (hPDS) cause Pendred Syndrome /DFNB4, syndromic deafness with enlargement of the vestibular aqueduct and low-penetrance goiter. Here we present data on cloning, protein overexpression and purification, refolding, and biophysical characterization of the recombinant hPDS STAS domain lacking its intrinsic variable sequence (STAS-ΔIVS). We report a reproducible protein refolding protocol enabling milligram scale expression and purification of uniformly 15N- and 13C/15N-enriched hPDS STAS-ΔIVS domain suitable for structural characterization by solution NMR. Circular dichroism, one-dimensional 1H, two-dimensional 1H–15N HSQC, and 1H–13C HSQC NMR spectra confirmed the well-folded state of purified hPDS STAS-ΔIVS in solution. Heteronuclear NMR chemical shift perturbation of select STAS-ΔIVS residues by GDP was observed at fast-to-intermediate NMR time scales. Intrinsic tryptophan fluorescence quench experiments demonstrated GDP binding to hPDS STAS-ΔIVS with Kd of 178 μM. These results are useful for structure/function characterization of hPDS STAS, the cytoplasmic subdomain of the congenital deafness protein, pendrin, as well as for studies of other mammalian STAS domains. Reproducible protein refolding protocol for human pendrin STAS domain. Milligram scale purification of uniformly 15N- and 13C/15N-enriched protein. Protein adopts folded conformation in solution. Heteronuclear NMR and fluorescence demonstrate protein binding to GDP.
Collapse
|
16
|
Srinivasan L, Baars TL, Fendler K, Michel H. Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:698-705. [DOI: 10.1016/j.bbamem.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
|
17
|
Haertlein M, Moulin M, Devos JM, Laux V, Dunne O, Trevor Forsyth V. Biomolecular Deuteration for Neutron Structural Biology and Dynamics. Methods Enzymol 2016; 566:113-57. [DOI: 10.1016/bs.mie.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Geertsma ER, Chang YN, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 2015; 22:803-8. [PMID: 26367249 DOI: 10.1038/nsmb.3091] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
Abstract
The SLC26 family of membrane proteins combines a variety of functions within a conserved molecular scaffold. Its members, besides coupled anion transporters and channels, include the motor protein Prestin, which confers electromotility to cochlear outer hair cells. To gain insight into the architecture of this protein family, we characterized the structure and function of SLC26Dg, a facilitator of proton-coupled fumarate symport, from the bacterium Deinococcus geothermalis. Its modular structure combines a transmembrane unit and a cytoplasmic STAS domain. The membrane-inserted domain consists of two intertwined inverted repeats of seven transmembrane segments each and resembles the fold of the unrelated transporter UraA. It shows an inward-facing, ligand-free conformation with a potential substrate-binding site at the interface between two helix termini at the center of the membrane. This structure defines the common framework for the diverse functional behavior of the SLC26 family.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yung-Ning Chang
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Farooque R Shaik
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Els Pardon
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Research Center, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Gabel F. Small-Angle Neutron Scattering for Structural Biology of Protein–RNA Complexes. Methods Enzymol 2015; 558:391-415. [DOI: 10.1016/bs.mie.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|