1
|
Xiong Z, Guan H, Pei S, Wang C. Identification of metabolism-related subtypes and feature genes of pre-eclampsia. Sci Rep 2025; 15:4986. [PMID: 39930027 PMCID: PMC11811273 DOI: 10.1038/s41598-025-89140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The heterogeneity of pre-eclampsia (PE) complicates its pathogenesis, which remains incompletely understood. Emerging evidence indicates a significant role of metabolism in the pathophysiology of PE. We procured the PE dataset from the Gene Expression Omnibus database and sourced a published compilation of metabolism-related genes, then employed consensus clustering to classify PE subtypes. Subsequently, we examined the relationships of these subtypes with metabolic features and immune infiltration. Feature genes were identified using weighted gene co-expression network analysis (WGCNA) and further scrutinized through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To refine the selection of feature genes, we applied two machine learning algorithms. Additionally, we assessed the expression profiles of RAG1, RBBP7, RFTN2, SPATA7, and ZNF16 at the single-cell RNA sequencing (scRNA-seq) level. Finally, we validated the diagnostic value and expression of these genes using PE datasets and quantitative reverse transcription-PCR (qRT-PCR) analysis. We identified three PE subtypes on the basis of the number of distinct metabolic characteristics, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. Through WGCNA, we pinpointed 101 metabolic genes that were strongly associated with PE progression. Machine learning algorithms helped to narrow the list to five key signature genes, which were then used to construct a predictive model offering significant clinical benefits for PE patients. qRT-PCR analysis confirmed that these genes are closely linked to PE progression, while scRNA-seq data revealed high expression of RBBP7 in trophoblast cells. In conclusion, the five genes identified here-RAG1, RBBP7, RFTN2, SPATA7, and ZNF16-were found to be strongly associated with PE progression.
Collapse
Affiliation(s)
- Zhihui Xiong
- Obstetrical Department, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310007, China
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hailian Guan
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Shuping Pei
- Obstetrical Department, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Caijiao Wang
- Neurology Department, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
2
|
Zhao L, Teng J, Ning C, Zhang Q. Genome-Wide Association Study of Insertions and Deletions Identified Novel Loci Associated with Milk Production Traits in Dairy Cattle. Animals (Basel) 2024; 14:3556. [PMID: 39765460 PMCID: PMC11672399 DOI: 10.3390/ani14243556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Genome-wide association study (GWAS) have identified a large number of SNPs associated with milk production traits in dairy cattle. Behind SNPs, INDELs are the second most abundant genetic polymorphisms in the genome, which may exhibit an independent association with complex traits in humans and other species. However, there are no reports on GWASs of INDELs for milk production traits in dairy cattle. In this study, using imputed sequence data, we performed INDEL-based and SNP-based GWASs for milk production traits in a Holstein cattle population. We identified 58 unique significant INDELs for one or multiple traits. The majority of these INDELs are in considerable LD with nearby significant SNPs. However, through conditional association analysis, we identified nine INDELs which showed independent associations. Genomic annotations of these INDELs indicated some novel associated genes, i.e., TRNAG-CCC, EPPK1, PPM1K, PTDSS1, and mir-10163, which were not reported in previous SNP-based GWASs. Our findings suggest that INDEL-based GWASs could be valuable complement to SNP-based GWASs for milk production traits.
Collapse
Affiliation(s)
| | | | | | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (L.Z.); (J.T.); (C.N.)
| |
Collapse
|
3
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
5
|
Zhai PF, Wang F, Su R, Lin HS, Jiang CL, Yang GH, Yu J, Zhang JW. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. J Biol Chem 2014; 289:22600-22613. [PMID: 24982425 DOI: 10.1074/jbc.m114.547380] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has shown that microRNAs have key roles in regulating various normal physiological processes, whereas their deregulated expression is correlated with various diseases. The miR-146 family includes miR-146a and miR-146b, with a distinct expression spectrum in different hematopoietic cells. Recent work indicated that miR-146a has a close relationship with inflammation and autoimmune diseases. miR-146-deficient mice have developed some abnormal hematopoietic phenotypes, suggesting the potential functions of miR-146 in hematopoietic development. In this study, we found that miR-146b was consistently up-regulated in both K562 and CD34(+) hematopoietic stem/progenitor cells (HSPCs) undergoing either erythroid or megakaryocytic differentiation. Remarkably, erythroid and megakaryocytic maturation of K562 cells was induced by excess miR-146b but inhibited by decreased miR-146b levels. More importantly, an mRNA encoding receptor tyrosine kinase, namely platelet-derived growth factor receptor α (PDGFRA), was identified and validated as a direct target of miR-146b in hematopoietic cells. Gain-of-function and loss-of-function assays showed that PDGFRA functioned as a negative regulator in erythroid and megakaryocytic differentiation. miR-146b could ultimately affect the expression of the GATA-1 gene, which is regulated by HEY1 (Hairy/enhancer-of-split related with YRPW motif protein 1), a transcriptional repressor, via inhibition of the PDGFRA/JNK/JUN/HEY1 pathway. Lentivirus-mediated gene transfer also demonstrated that the overexpression of miR-146b promoted erythropoiesis and megakaryocytopoiesis of HSPCs via its regulation on the PDGFRA gene and effects on GATA-1 expression. Moreover, we confirmed that the binding of GATA-1 to the miR-146b promoter and induction of miR-146b during hematopoietic maturation were dependent on GATA-1. Therefore, miR-146b, PDGFRA, and GATA-1 formed a regulatory circuit to promote erythroid and megakaryocytic differentiation.
Collapse
Affiliation(s)
- Peng-Fei Zhai
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hai-Shuang Lin
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chong-Liang Jiang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Gui-Hua Yang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jun-Wu Zhang
- Key State Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|