1
|
Tong J, Zhao Y, Jin Y, Hao Z, Li S, Sun M. A mini review on the regulation of coagulation homeostasis through interfering with vitamin K-dependent coagulation/anticoagulation factors. Biochem Biophys Res Commun 2025; 753:151494. [PMID: 39978255 DOI: 10.1016/j.bbrc.2025.151494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Coagulation disorders, such as excessive bleeding or thrombosis, present significant health challenges. Vitamin K-dependent proteins (VKDPs), including coagulation and anticoagulation factors, are essential for maintaining the coagulation homeostasis due to their key roles in the coagulation cascade. Therefore, VKDPs have become significant targets for regulating coagulation homeostasis, and various strategies have been developed, primarily including small molecule drugs and nanomaterials. This review presents the summary of these strategies, focusing on the mechanisms, effectiveness and limitations. It first discusses the pivotal role of VKDPs in the coagulation cascade, followed by an in-depth analysis of how small molecule drugs and nanomaterials to regulate hemostasis through interfering with VKDPs. Furthermore, this review addresses the challenges faced in the current approaches and potential future research directions. We hope this review will contribute to advancing the development of novel methods for modulating coagulation homeostasis through VKDP interference.
Collapse
Affiliation(s)
- Jiangbo Tong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yongchao Jin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Mei Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Jiménez-Dinamarca I, Prado Y, Tapia P, Gatica S, Alt C, Lin CP, Reyes-Martínez C, Feijóo CG, Aravena C, González-Canacer A, Correa S, Varela D, Cabello-Verrugio C, Simon F. Disseminated intravascular coagulation phenotype is regulated by the TRPM7 channel during sepsis. Biol Res 2023; 56:8. [PMID: 36869357 PMCID: PMC9983216 DOI: 10.1186/s40659-023-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Collapse
Affiliation(s)
- Ivanka Jiménez-Dinamarca
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristian Reyes-Martínez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Carmen G Feijóo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Alejandra González-Canacer
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Simón Correa
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
3
|
Guo Y, Wang M, Liu Q, Liu G, Wang S, Li J. Recent advances in the medical applications of hemostatic materials. Theranostics 2023; 13:161-196. [PMID: 36593953 PMCID: PMC9800728 DOI: 10.7150/thno.79639] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials. Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Guoliang Liu
- Department of Operating Theater and Anesthesiology, Jilin University Second Hospital, Changchun, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| |
Collapse
|
4
|
Llancalahuen FM, Vallejos A, Aravena D, Prado Y, Gatica S, Otero C, Simon F. α1-Adrenergic Stimulation Increases Platelet Adhesion to Endothelial Cells Mediated by TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:65-82. [PMID: 37093422 DOI: 10.1007/978-3-031-26163-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Stimulation of a1-adrenergic nervous system is increased during systemic inflammation and other pathological conditions with the consequent adrenergic receptors (ARs) activation. It has been reported that a1-stimulation contributes to coagulation since a1-AR blockers inhibit coagulation and its organic consequences. Also, coagulation induced by a1-AR stimulation can be greatly decreased using a1-AR blockers. In health, endothelial cells (ECs) perform anticoagulant actions at cellular and molecular level. However, during inflammation, ECs turn dysfunctional promoting a procoagulant state. Endothelium-dependent coagulation progresses at cellular and molecular levels, promoting endothelial acquisition of procoagulant properties to potentiate coagulation by means of prothrombotic and antifibrinolytic proteins expression increase in ECs releasing them to circulation, the thrombus formation is strengthened. Calcium signaling is a main feature of coagulation. Inhibition of ion channels involved in Ca2+ entry severely decreases coagulation. The transient receptor potential canonical 6 (TRPC6) is a non-selective Ca2+-permeable ion channel. TRPC6 activity is induced by diacylglycerol, suggesting that is regulated by a1-ARs. Furthermore, a1-ARs stimulation elicits a TRPC-like current in rat mesenteric artery smooth muscle and mesangial cells. However, whether TRPC6 could promote an ECs-mediated platelet adhesion induced by a1-adrenergic stimulation is currently not known. Therefore, the aim of this study was to examine if the TRPC6 calcium channel mediates platelet adhesion induced by a1-adrenergic stimulation. Our results suggest that platelet adhesion to ECs is enhanced by the a1-adrenergic stimulation evoked by phenylephrine mediated by TRPC6 activity. We conclude that TRPC6 is a molecular determinant in platelet adhesion to ECs with implications in systemic inflammatory diseases treatment.
Collapse
Affiliation(s)
- Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alejando Vallejos
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
5
|
Wang K, Li J, Wang Y, Wang Y, Qin Y, Yang F, Zhang M, Zhu H, Li Z. Orchestrated cellular, biochemical, and biomechanical optimizations endow platelet-rich plasma-based engineered cartilage with structural and biomechanical recovery. Bioact Mater 2021; 6:3824-3838. [PMID: 33937588 PMCID: PMC8065202 DOI: 10.1016/j.bioactmat.2021.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, biomaterials for cartilage regeneration has been intensively investigated. However, the development of scaffolds that capture regenerated cartilage with biomechanical and structural recovery has rarely been reported. To address this challenge, platelet-rich plasma (PRP)-based cartilage constructs with a well-orchestrated symphony of cellular, biochemical and biomechanical elements were prepared by simultaneously employing chondrogenic progenitor cells (CPCs) as a cell source, optimizing platelet concentration, and adding an enzyme-ion activator. It was shown that this triple-optimized PRP + CPC construct possessed increased biomechanical properties and suitable biochemical signals. The following in vitro study demonstrated that the triple-optimized PRP + CPC constructs generated cartilage-like tissue with higher expression levels of chondrogenic-specific markers, more deposition of cartilage-specific extracellular matrix (ECM), and greater biomechanical values than those of the other constructs. Twelve weeks after the construct was implanted in a cartilage defect in vivo, histological analysis, qPCR, and biomechanical tests collectively showed that the triple-optimized constructs yielded a more chondrocyte-like cell phenotype with a higher synthesis of Col-II and aggrecan. More importantly, the triple-optimized constructs facilitated cartilage regeneration with better biomechanical recovery than that of the other constructs. These results demonstrate the efficacy of the triple-optimization strategy and highlight the simplicity and potency of this PRP + CPC construct for cartilage regeneration. Cartilage tissue engineering has been intensively investigated. We designed a PRP-based construct with favorable cell source, reinforced scaffold and appropriate biofactors. This designed construct can facilitate cartilage regeneration with biomechanical and structural recovery simultaneously. The favorable performance of the proposed scaffolds highlights the triple-optimization strategy to improve cartilage engineering.
Collapse
Affiliation(s)
- Ketao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China.,Department of Foot and Ankle, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.,Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji Li
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Yuxing Wang
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Yaqiang Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Qin
- Department of Blood Transfusion, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingzhu Zhang
- Department of Foot and Ankle, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heng Zhu
- Beijing Institute of Radiation Medicine/Beijing Institute of Basic Medical Sciences, Haidian, Beijing, 100850, China
| | - Zhongli Li
- Department of Orthopedics, Chinese PLA General Hospital, Haidian, Beijing, 100853, China
| |
Collapse
|
6
|
Phosphatidylserine and phosphatidylethanolamine regulate the structure and function of FVIIa and its interaction with soluble tissue factor. Biosci Rep 2021; 41:227639. [PMID: 33479740 PMCID: PMC7859323 DOI: 10.1042/bsr20204077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150–160 μM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70–80 μM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50–100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.
Collapse
|
7
|
Podlipec R, Arsov Z, Koklič T, Štrancar J. Characterization of blood coagulation dynamics and oxygenation in ex-vivo retinal vessels by fluorescence hyperspectral imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000021. [PMID: 32281304 DOI: 10.1002/jbio.202000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
Blood coagulation mechanisms forming a blood clot and preventing hemorrhage have been extensively studied in the last decades. Knowing the mechanisms behind becomes very important particularly in the case of blood vessel diseases. Real-time and accurate diagnostics accompanied by the therapy are particularly needed, for example, in diseases related to retinal vasculature. In our study, we employ for the first time fluorescence hyperspectral imaging (fHSI) combined with the spectral analysis algorithm concept to assess physical as well as functional information of blood coagulation in real-time. By laser-induced local disruption of retinal vessels to mimic blood leaking and subsequent coagulation and a proper fitting algorithm, we were able to reveal and quantify the extent of local blood coagulation through direct identification of the change of oxyhemoglobin concentration within few minutes. We confirmed and illuminated the spatio-temporal evolution of the essential role of erythrocytes in the coagulation cascade as the suppliers of oxygenated hemoglobin. By additional optical tweezers force manipulation, we showed immediate aggregation of erythrocytes at the coagulation site. The presented fluorescence-based imaging concept could become a valuable tool in various blood coagulation diagnostics as well as theranostic systems if coupled with the laser therapy.
Collapse
Affiliation(s)
- Rok Podlipec
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Ion Beam Center, Bautzner Landstrasse 400, Dresden, Germany
| | - Zoran Arsov
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| | - Tilen Koklič
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| | - Janez Štrancar
- Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, Ljubljana, Slovenia
| |
Collapse
|
8
|
The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neurocrit Care 2020; 31:188-195. [PMID: 29951959 DOI: 10.1007/s12028-018-0564-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, with a high rate of mortality and morbidity. Even with the best current medical or surgical interventions, outcomes remain poor. The location and initial hematoma volume are strong predictors of mortality. Hematoma expansion (HE) is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for HE have been identified, including baseline ICH volume, anticoagulation, and computed tomography angiography spot signs. Recent studies have shown the correlation of serum calcium (Ca++) levels on admission with HE. Low serum Ca++ level has been associated with larger hematoma volume at the time of presentation, HE, and worse outcome. Although the causal and mechanistic links between low serum Ca++ level and HE are not well understood, several mechanisms have been proposed including coagulopathy, platelet dysfunction, and higher blood pressure (BP) in the context of low serum Ca++ level. However, low serum Ca++ level might be only a biomarker of the adaptive response due to acute inflammatory response following acute ICH. The purpose of the current review is to discuss the evidence regarding the possible role of low serum Ca++ level on HE in acute ICH.
Collapse
|
9
|
Elkhatib THM, Shehta N, Bessar AA. Hematoma Expansion Predictors: Laboratory and Radiological Risk Factors in Patients with Acute Intracerebral Hemorrhage: A Prospective Observational Study. J Stroke Cerebrovasc Dis 2019; 28:2177-2186. [PMID: 31133486 DOI: 10.1016/j.jstrokecerebrovasdis.2019.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/20/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is considered a devastating neurologic emergency and carried a higher morbidity and mortality rates. Early hematoma expansion (HE) is considered one of the poor prognostic factors after ICH. Consequently, determination of the possible risk factors for HE could be effective in early detection of high-risk patients and hence directing management course aiming to improving ICH outcome. METHODS One-hundred and thirty-six spontaneous ICH patients were included and prospectively evaluated for the presence of HE. Demographic, laboratory, and certain radiological factors were studied and compared between those with HE and those without, the in-hospital mortality rates were assessed as well. RESULTS HE was observed in 30% of the studied cohort, those who developed HE had more neurologic impairment (Glasgow coma scale, median 9; National Institute of Health Stroke Scale, median 34), and higher in-hospital mortality rate (53.6%) than those without HE. HE was related to the presence of higher red blood cell distribution width (RDW), reduced total cholesterol, low-density lipoprotein-C (LDL-C), and Ca levels. Among the radiological factors, hematoma density (heterogeneous), and shape (irregular) are highly related to the occurrence of HE. The computed tomography angiography (CTA) spot sign among patients with ICH was associated with HE development. CONCLUSIONS Abnormal RDW; low cholesterol, LDL, and Ca level; heterogeneous density, irregular shape hemorrhage, and presence of CTA spot sign were associated with the development of HE in the setting of spontaneous ICH.
Collapse
Affiliation(s)
- Takwa H M Elkhatib
- Department of Neurology, Faculty of Medicine, Zagazig University, Sharkia, Egypt.
| | - Nahed Shehta
- Department of Neurology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| | - Ahmad Awad Bessar
- Department of Radiology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
10
|
MacKay EJ, Stubna MD, Holena DN, Reilly PM, Seamon MJ, Smith BP, Kaplan LJ, Cannon JW. Abnormal Calcium Levels During Trauma Resuscitation Are Associated With Increased Mortality, Increased Blood Product Use, and Greater Hospital Resource Consumption: A Pilot Investigation. Anesth Analg 2017; 125:895-901. [PMID: 28704250 DOI: 10.1213/ane.0000000000002312] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Admission hypocalcemia predicts both massive transfusion and mortality in severely injured patients. However, the effect of calcium derangements during resuscitation remains unexplored. We hypothesize that any hypocalcemia or hypercalcemia (either primary or from overcorrection) in the first 24 hours after severe injury is associated with increased mortality. METHODS All patients at our institution with massive transfusion protocol activation from January 2013 through December 2014 were identified. Patients transferred from another hospital, those not transfused, those with no ionized calcium (Ca) measured, and those who expired in the trauma bay were excluded. Hypocalcemia and hypercalcemia were defined as any level outside the normal range of Ca at our institution (1-1.25 mmol/L). Receiver operator curve analysis was also used to further examine significant thresholds for both hypocalcemia and hypercalcemia. Hospital mortality was compared between groups. Secondary outcomes included advanced cardiovascular life support, damage control surgery, ventilator days, and intensive care unit days. RESULTS The massive transfusion protocol was activated for 77 patients of whom 36 were excluded leaving 41 for analysis. Hypocalcemia occurred in 35 (85%) patients and hypercalcemia occurred in 9 (22%). Mortality was no different in hypocalcemia versus no hypocalcemia (29% vs 0%; P = .13) but was greater in hypercalcemia versus no hypercalcemia (78% vs 9%; P < .01). Receiver operator curve analysis identified inflection points in mortality outside a Ca range of 0.84 to 1.30 mmol/L. Using these extreme values, 15 (37%) had hypocalcemia with a 60% mortality (vs 4%; P < .01) and 9 (22%) had hypercalcemia with a 78% mortality (vs 9%; P < .01). Patients with extreme hypocalcemia and hypercalcemia also received more red blood cells, plasma, platelets, and calcium repletion. CONCLUSIONS Hypocalcemia and hypercalcemia occur commonly during the initial resuscitation of severely injured patients. Mild hypocalcemia may be tolerable, but more extreme hypocalcemia and any hypercalcemia should be avoided. Further assessment to define best practice for calcium management during resuscitation is warranted.
Collapse
Affiliation(s)
- Emily J MacKay
- From the *Department Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; †Mountain Track Apps, Philadelphia, Pennsylvania; ‡Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; §Department of Surgery, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania; and ‖Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu T, Peng F, Zhang T, Chi B, Xu H, Mao C, Feng S. Poly(γ-glutamic acid), coagulation? Anticoagulation? JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1599-610. [DOI: 10.1080/09205063.2016.1221700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Fang Peng
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Chun Mao
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Shuaihui Feng
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Szyrwiel Ł, Liauchuk V, Chavatte L, Lobinski R. In vitro induction and proteomics characterisation of a uranyl-protein interaction network in bovine serum. Metallomics 2015; 7:1604-11. [PMID: 26506398 DOI: 10.1039/c5mt00207a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Uranyl ions (UO2(2+)) were shown to interact with a number of foetal serum proteins, leading to the formation of a complex that could be isolated by ultracentrifugation. The molecular weight of the complex was estimated based on size-exclusion chromatography as 650 000 Da. Online ICP AES detection indicated that UO2(2+) in the complex co-eluted with minor amounts of calcium and phosphorous, but not with magnesium. A 1D gel electrophoresis of the U-complex produced more than 10 bands of similar intensity compared with only 2-3 intense bands corresponding to the main serum proteins in the control serum, indicative of the specific interaction of UO2(2+) with minor proteins. A proteomics approach allowed for the identification of 74 proteins in the complex. Analysis of the protein-protein interaction network in the UO2(2+) complex identified 32 proteins responsible for protein-protein complex formation and 34 with demonstrated ion-binding function, suggesting that UO2(2+) stimulates the formation of protein functional networks rather than using a particular molecule as its target.
Collapse
Affiliation(s)
- Łukasz Szyrwiel
- CNRS/UPPA, LCABIE, UMR5254, Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France.
| | | | | | | |
Collapse
|
13
|
Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr Res Rev 2015; 28:83-99. [PMID: 26466525 DOI: 10.1017/s0954422415000050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione, dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.
Collapse
|
14
|
Abstract
Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µ m, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca(++). We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.
Collapse
|
15
|
Zhang L, Wei J, Guo F, Duan J, Li Y, Shi Z, Yang Y, Zhou X, Sun Z. Endosulfan activates the extrinsic coagulation pathway by inducing endothelial cell injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15722-15730. [PMID: 26028348 DOI: 10.1007/s11356-015-4710-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Endosulfan, a persistent organic pollutant, is widely used in agriculture as a pesticide. The aim of the present study was to evaluate the blood toxicity of different doses of endosulfan in Wistar rats. The experimental sample was composed of four groups, a control group that did not receive endosulfan and three endosulfan-exposed groups that respectively received 1, 5, or 10 mg/kg/day (doses below LD50), of endosulfan for 21 days. The results showed that endosulfan significantly decreased the prothrombin time (PT) and upregulated the activated coagulation factors VIIa, Xa, and XIIIa; thrombin-antithrombin complex (TAT); and P-selectin. Plasma levels of tissue factor (TF) and malondialdehyde (MDA) were increased in the endosulfan groups. The activated partial thromboplastin time (APTT) and the level of activated coagulation factor IXa showed no obvious changes. Immunohistochemical results showed increased expression of von Willebrand factor (vWF) and the inflammatory cytokine interleukin (IL)-1β in the groups exposed to endosulfan. The pathology and electron microscopy results showed impaired vascular tissue accompanied by the exfoliation of endothelial cells and mitochondrial damage in the endosulfan-exposed groups. In summary, our results suggest that endosulfan damages endothelial cells via oxidative stress and the inflammatory response, leading to the release of TF and vWF into the blood. The TF and vWF in the blood may activate extrinsic coagulation factors and platelets, thus triggering the extrinsic coagulation pathway. There were no obvious effects on the intrinsic coagulation pathway.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fangzi Guo
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yumei Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
16
|
Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem J 2015; 467:37-46. [PMID: 25572019 DOI: 10.1042/bj20141177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10⁵. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²⁺. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²⁺ and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²⁺ concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation.
Collapse
|