1
|
Zheng T, Lu F, Wu P, Chen Y, Zhang R, Li X. Ferroptosis and cuproptosis in periodontitis: recent biological insights and therapeutic advances. Front Immunol 2025; 16:1526961. [PMID: 40066457 PMCID: PMC11891063 DOI: 10.3389/fimmu.2025.1526961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis. Further, we propose that a homeostatic imbalance of copper and iron, driven by periodontal pathogens, may contribute to elevated periodontal oxidative stress, representing a potential unifying link between ferroptosis and cuproptosis involved in periodontitis. This article presents a comprehensive overview of the molecular mechanisms underlying ferroptosis and cuproptosis in periodontitis, offering novel theoretical insights into its pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Tengyi Zheng
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peihang Wu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangan Chen
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China
| |
Collapse
|
2
|
You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev 2025; 54:1552-1582. [PMID: 39744985 DOI: 10.1039/d4cs00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD). Despite the importance of metal ions in initiating PCD, the molecular mechanisms of intracellular metal ions within these processes are infrequently discussed. An in-depth understanding and review of the role of metal ions in triggering PCD may better uncover novel tools for cancer diagnosis and therapy. Specifically, the essential roles of calcium (Ca2+), iron (Fe2+/3+), copper (Cu+/2+), and zinc (Zn2+) ions in triggering PCD are primarily explored in this review, and other ions like manganese (Mn2+/3+/4+), cobalt (Co2+/3+) and magnesium ions (Mg2+) are briefly discussed. Further, this review elaborates on the underlying chemical mechanisms and summarizes these metal ions triggering PCD in cancer therapy. This review bridges chemistry, immunology, and biology to foster the rational regulation of metal ions to induce PCD for cancer therapy.
Collapse
Affiliation(s)
- Yawen You
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaochen Guo
- Department of Biochemistry, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute for Clinical and Translational Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Maji S, Pirozzi M, Ruturaj, Pandey R, Ghosh T, Das S, Gupta A. Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Traffic 2023; 24:587-609. [PMID: 37846526 DOI: 10.1111/tra.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.
Collapse
Affiliation(s)
- Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Tamal Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
5
|
Kiselyov K. Channeling hope for uranium-induced kidney damage and beyond with TRPML1. Cell Calcium 2023; 115:102799. [PMID: 37716038 DOI: 10.1016/j.ceca.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, United States of America.
| |
Collapse
|
6
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
7
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023; 19:2175-2195. [PMID: 37055935 PMCID: PMC10351475 DOI: 10.1080/15548627.2023.2200554] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhou C, Yang J, Liu T, Jia R, Yang L, Sun P, Zhao W. Copper metabolism and hepatocellular carcinoma: current insights. Front Oncol 2023; 13:1186659. [PMID: 37476384 PMCID: PMC10355993 DOI: 10.3389/fonc.2023.1186659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Copper is an essential trace element that acts as a cofactor in various enzyme active sites in the human body. It participates in numerous life activities, including lipid metabolism, energy metabolism, and neurotransmitter synthesis. The proposal of "Cuproptosis" has made copper metabolism-related pathways a research hotspot in the field of tumor therapy, which has attracted great attention. This review discusses the biological processes of copper uptake, transport, and storage in human cells. It highlights the mechanisms by which copper metabolism affects hepatocellular carcinogenesis and metastasis, including autophagy, apoptosis, vascular invasion, cuproptosis, and ferroptosis. Additionally, it summarizes the current clinical applications of copper metabolism-related drugs in antitumor therapy.
Collapse
Affiliation(s)
- Cheng Zhou
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinqiu Yang
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Liu
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ran Jia
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pengfei Sun
- Department of Orthopaedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wenxia Zhao
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Kowalczyk A, Gbadamosi O, Kolor K, Sosa J, Andrzejczuk L, Gibson G, Croix C, Chikina M, Aizenman E, Clark N, Kiselyov K. Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochem J 2021; 478:3205-3220. [PMID: 34397090 PMCID: PMC10491466 DOI: 10.1042/bcj20210342] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Recent advances in genome sequencing have led to the identification of new ion and metabolite transporters, many of which have not been characterized. Due to the variety of subcellular localizations, cargo and transport mechanisms, such characterization is a daunting task, and predictive approaches focused on the functional context of transporters are very much needed. Here we present a case for identifying a transporter localization using evolutionary rate covariation (ERC), a computational approach based on pairwise correlations of amino acid sequence evolutionary rates across the mammalian phylogeny. As a case study, we find that poorly characterized transporter SLC30A9 (ZnT9) coevolves with several components of the mitochondrial oxidative phosphorylation chain, suggesting mitochondrial localization. We confirmed this computational finding experimentally using recombinant human SLC30A9. SLC30A9 loss caused zinc mishandling in the mitochondria, suggesting that under normal conditions it acts as a zinc exporter. We therefore propose that ERC can be used to predict the functional context of novel transporters and other poorly characterized proteins.
Collapse
Affiliation(s)
- Amanda Kowalczyk
- Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, PA 15213, U.S.A
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
| | - Omotola Gbadamosi
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Kathryn Kolor
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Jahree Sosa
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Livia Andrzejczuk
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Gregory Gibson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Claudette Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, U.S.A
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, U.S.A
| | - Nathan Clark
- Department of Human Genetics, University of Utah, Utah 84112, U.S.A
| | - Kirill Kiselyov
- Department of Biological Science, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| |
Collapse
|
10
|
Luo Y, Fu Y, Huang Z, Li M. Transition metals and metal complexes in autophagy and diseases. J Cell Physiol 2021; 236:7144-7158. [PMID: 33694161 DOI: 10.1002/jcp.30359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022]
Abstract
Transition metals refer to the elements in the d and ds blocks of the periodic table. Since the success of cisplatin and auranofin, transition metal-based compounds have become a prospective source for drug development, particularly in cancer treatment. In recent years, extensive studies have shown that numerous transition metal-based compounds could modulate autophagy, promising a new therapeutic strategy for metal-related diseases and the design of metal-based agents. Copper, zinc, and manganese, which are common components in physiological pathways, play important roles in the progression of cancer, neurodegenerative diseases, and cardiovascular diseases. Furthermore, enrichment of copper, zinc, or manganese can regulate autophagy. Thus, we summarized the current advances in elucidating the mechanisms of some metals/metal-based compounds and their functions in autophagy regulation, which is conducive to explore the intricate roles of autophagy and exploit novel therapeutic drugs for human diseases.
Collapse
Affiliation(s)
- Yuping Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiying Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Tan X, Guan H, Yang Y, Luo S, Hou L, Chen H, Li J. Cu(II) disrupts autophagy-mediated lysosomal degradation of oligomeric Aβ in microglia via mTOR-TFEB pathway. Toxicol Appl Pharmacol 2020; 401:115090. [DOI: 10.1016/j.taap.2020.115090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023]
|
12
|
Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem J 2020; 476:3705-3719. [PMID: 31790150 DOI: 10.1042/bcj20190591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors' platinum resistance identifies novel approach to treating these tumors.
Collapse
|
13
|
Wang S, Chen Y, Li X, Zhang W, Liu Z, Wu M, Pan Q, Liu H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed Pharmacother 2020; 128:110272. [PMID: 32447212 DOI: 10.1016/j.biopha.2020.110272] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are energy producers that play a vital role in cell survival. Mitochondrial dysfunction is involved in many diseases, including metabolic syndrome, neurodegenerative disorders, cardiomyopathies, cancer, obesity, and diabetic kidney disease, and challenges still remain in terms of treatments for these diseases. Mitochondrial quality control (MQC), which is defined as the maintenance of the quantity, morphology, and function of mitochondria, plays a pivotal role in maintaining cellular metabolic homeostasis and cell survival. Recently, growing evidence suggests that the transcription factor EB (TFEB) plays a pivotal role in MQC. Here, we systemically investigate the potential role and mechanisms of TFEB in MQC, which include the activation of mitophagy, regulation of mitochondrial biogenesis, reactive oxygen species (ROS) clearance, and the balance of mitochondria fission-fusion cycle. Importantly, we further discuss the therapeutic measures and effects aimed at TFEB on mitochondrial dysfunction-related diseases. Taken together, targeting TFEB to regulate MQC may represent an appealing therapeutic strategy for mitochondrial dysfunction related-diseases.
Collapse
Affiliation(s)
- Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaoyu Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weihuang Zhang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zejian Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Man Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Huafeng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
14
|
da Silva Diniz WJ, Banerjee P, Mazzoni G, Coutinho LL, Cesar ASM, Afonso J, Gromboni CF, Nogueira ARA, Kadarmideen HN, de Almeida Regitano LC. Interplay among miR-29 family, mineral metabolism, and gene regulation in Bos indicus muscle. Mol Genet Genomics 2020; 295:1113-1127. [PMID: 32444960 DOI: 10.1007/s00438-020-01683-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.\\An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal. Therefore, we carried out a miRNA co-expression and multi-level miRNA-mRNA integration analyses to predict the putative drivers (miRNAs and genes) associated with muscle mineral concentration in Nelore steers. In this study, we identified calcium and iron to be the pivotal minerals associated with miRNAs and gene targets. Furthermore, we identified the miR-29 family (miR-29a, -29b, -29c, -29d-3p, and -29e) as the putative key regulators modulating mineral homeostasis. The miR-29 family targets genes involved with AMPK, insulin, mTOR, and thyroid hormone signaling pathways. Finally, we reported an interplay between miRNAs and minerals acting cooperatively to modulate co-expressed genes and signaling pathways both involved with mineral and energy homeostasis in Nelore muscle. Although we provided some evidence to understand this complex relationship, future work should determine the functional implications of minerals for miRNA levels and their feedback regulation system.
Collapse
Affiliation(s)
- Wellison Jarles da Silva Diniz
- Graduate Program in Evolutionary Genetics and Molecular Biology, Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Priyanka Banerjee
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- Graduate Program in Evolutionary Genetics and Molecular Biology, Center for Biological and Health Sciences (CCBS), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Caio Fernando Gromboni
- IFBA, Bahia Federal Institute of Education Science and Technology, Campus Ilhéus, Ilhéus, Bahia, Brazil
| | - Ana Rita Araújo Nogueira
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | - Haja N Kadarmideen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
15
|
Li D, Shao R, Wang N, Zhou N, Du K, Shi J, Wang Y, Zhao Z, Ye X, Zhang X, Xu H. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 2020; 17:872-887. [PMID: 32138578 DOI: 10.1080/15548627.2020.1739442] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress underlies a number of pathological conditions, including cancer, neurodegeneration, and aging. Antioxidant-rich foods help maintain cellular redox homeostasis and mitigate oxidative stress, but the underlying mechanisms are not clear. For example, sulforaphane (SFN), an electrophilic compound that is enriched in cruciferous vegetables such as broccoli, is a potent inducer of cellular antioxidant responses. NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2), a transcriptional factor that controls the expression of multiple detoxifying enzymes through antioxidant response elements (AREs), is a proposed target of SFN. NFE2L2/NRF2 is a target gene of TFEB (transcription factor EB), a master regulator of autophagic and lysosomal functions, which we show here to be potently activated by SFN. SFN induces TFEB nuclear translocation via a Ca2+-dependent but MTOR (mechanistic target of rapamycin kinase)-independent mechanism through a moderate increase in reactive oxygen species (ROS). Activated TFEB then boosts the expression of genes required for autophagosome and lysosome biogenesis, which are known to facilitate the clearance of damaged mitochondria. Notably, TFEB activity is required for SFN-induced protection against both acute oxidant bursts and chronic oxidative stress. Hence, by simultaneously activating macroautophagy/autophagy and detoxifying pathways, natural compound SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases.Abbreviations: ANOVA: analyzes of variance; AREs: antioxidant response elements; Baf-A1: bafilomycin A1; BHA: butylhydroxyanisole; CAT: catechin hydrate; CCCP: carbonyl cyanide m- chlorophenylhydrazone; CLEAR: coordinated lysosomal expression and regulation; DCFH-DA: 2',7'-dichlorofluorescin diacetate; FBS: fetal bovine serum; GFP: green fluorescent protein; HMOX1/HO-1: heme oxygenase 1; KD: knockdown; KEAP1: kelch like ECH associated protein 1; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MCOLN1/TRPML1: mucolipin 1; ML-SA1: mucolipin-specific synthetic agonist 1; ML-SI3: mucolipin-specific synthetic inhibitor 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: nuclear factor: erythroid 2 like 2; NPC: Niemann-Pick type C; PBS: phosphate-buffered saline; PPP2/PP2A: protein phosphatase 2; Q-PCR: real time polymerase chain reaction; ROS: reactive oxygen species; RPS6KB1/S6K1/p70S6K: ribosomal protein S6 kinase B1; SFN: sulforaphane; TFEB: transcription factor EB; WT, wild-type.
Collapse
Affiliation(s)
- Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rong Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Na Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kaili Du
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jiahui Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yihan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhuangzhuang Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Boudewyn LC, Walkley SU. Current concepts in the neuropathogenesis of mucolipidosis type IV. J Neurochem 2019; 148:669-689. [PMID: 29770442 PMCID: PMC6239999 DOI: 10.1111/jnc.14462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Mucolipidosis type IV (MLIV) is an autosomal recessive, lysosomal storage disorder causing progressively severe intellectual disability, motor and speech deficits, retinal degeneration often culminating in blindness, and systemic disease causing a shortened lifespan. MLIV results from mutations in the gene MCOLN1 encoding the transient receptor potential channel mucolipin-1. It is an ultra-rare disease and is currently known to affect just over 100 diagnosed individuals. The last decade has provided a wealth of research focused on understanding the role of the enigmatic mucolipin-1 protein in cell and brain function and how its absence causes disease. This review explores our current understanding of the mucolipin-1 protein in relation to neuropathogenesis in MLIV and describes recent findings implicating mucolipin-1's important role in mechanistic target of rapamycin and TFEB (transcription factor EB) signaling feedback loops as well as in the function of the greater endosomal/lysosomal system. In addition to addressing the vital role of mucolipin-1 in the brain, we also report new data on the question of whether haploinsufficiency as would be anticipated in MCOLN1 heterozygotes is associated with any evidence of neuron dysfunction or disease. Greater insights into the role of mucolipin-1 in the nervous system can be expected to shed light not only on MLIV disease but also on numerous processes governing normal brain function. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lauren C. Boudewyn
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Rockfield S, Guergues J, Rehman N, Smith A, Bauckman KA, Stevens SM, Nanjundan M. Proteomic Profiling of Iron-Treated Ovarian Cells Identifies AKT Activation that Modulates the CLEAR Network. Proteomics 2018; 18:e1800244. [PMID: 30267477 DOI: 10.1002/pmic.201800244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/05/2018] [Indexed: 01/05/2023]
Abstract
Although iron is essential for cell survival, dysregulated levels can contribute to cancer development or even cell death. The underlying mechanisms mediating these events remain unclear. Herein, proteomic alterations are assessed in iron-treated ovarian cell lines using reverse phase protein array (RPPA) technology and potential functional responses via ingenuity pathway analysis (IPA). Using these approaches, upregulation of pathways modulating organismal death with alterations in mTOR, MAPK, and AKT signaling in HEY ovarian cancer cells in contrast to T80 non-malignant ovarian cells is noted. Since modulation of cell death is mediated in part via microphthalmia-associated transcription factor (MiTF) family, which regulates lysosomal biogenesis and autophagosome formation by upregulating expression of coordinated lysosomal expression and regulation (CLEAR) network, expression changes in these factors in response to iron are investigated. Increased transcription factor EB (TFEB) in T80 (relative to HEY), accompanied by its nuclear translocation and increased CLEAR network gene expression with iron, is identified. Inhibition of AKT alters these responses in contrast to mTOR inhibition, which has little effect. Collectively, these findings support use of RPPA/IPA technology to predict functional responses to iron and further implicate AKT pathway and MiTF members in iron-induced cellular responses in ovarian cells.
Collapse
Affiliation(s)
- Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Nabila Rehman
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Aaron Smith
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| | - Kyle A Bauckman
- Nova Southeastern University, Dr. Kiran C. Patel College of Allopathic Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Stanley M Stevens
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL, 33620, USA
| |
Collapse
|
18
|
Effects of DHA on Hippocampal Autophagy and Lysosome Function After Traumatic Brain Injury. Mol Neurobiol 2017; 55:2454-2470. [PMID: 28365875 DOI: 10.1007/s12035-017-0504-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) triggers endoplasmic reticulum (ER) stress and impairs autophagic clearance of damaged organelles and toxic macromolecules. In this study, we investigated the effects of the post-TBI administration of docosahexaenoic acid (DHA) on improving hippocampal autophagy flux and cognitive functions of rats. TBI was induced by cortical contusion injury in Sprague-Dawley rats, which received DHA (16 mg/kg in DMSO, intraperitoneal administration) or vehicle DMSO (1 ml/kg) with an initial dose within 15 min after the injury, followed by a daily dose for 3 or 7 days. First, RT-qPCR reveals that TBI induced a significant elevation in expression of autophagy-related genes in the hippocampus, including SQSTM1/p62 (sequestosome 1), lysosomal-associated membrane proteins 1 and 2 (Lamp1 and Lamp2), and cathepsin D (Ctsd). Upregulation of the corresponding autophagy-related proteins was detected by immunoblotting and immunostaining. In contrast, the DHA-treated rats did not exhibit the TBI-induced autophagy biogenesis and showed restored CTSD protein expression and activity. T2-weighted images and diffusion tensor imaging (DTI) of ex vivo brains showed that DHA reduced both gray matter and white matter damages in cortical and hippocampal tissues. DHA-treated animals performed better than the vehicle control group on the Morris water maze test. Taken together, these findings suggest that TBI triggers sustained stimulation of autophagy biogenesis, autophagy flux, and lysosomal functions in the hippocampus. Swift post-injury DHA administration restores hippocampal lysosomal biogenesis and function, demonstrating its therapeutic potential.
Collapse
|
19
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
20
|
Ou L, Przybilla MJ, Whitley CB. Proteomic analysis of mucopolysaccharidosis I mouse brain with two-dimensional polyacrylamide gel electrophoresis. Mol Genet Metab 2017; 120:101-110. [PMID: 27742266 PMCID: PMC5293606 DOI: 10.1016/j.ymgme.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/08/2016] [Indexed: 12/19/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is due to deficiency of α-l-iduronidase (IDUA) and subsequent storage of undegraded glycosaminoglycans (GAG). The severe form of the disease, known as Hurler syndrome, is characterized by mental retardation and neurodegeneration of unknown etiology. To identify potential biomarkers and unveil the neuropathology mechanism of MPS I disease, two-dimensional polyacrylamide gel electrophoresis (PAGE) and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) were applied to compare proteome profiling of brains from MPS I and control mice (5-month old). A total of 2055 spots were compared, and 25 spots (corresponding to 50 different proteins) with a fold change ≥3.5 and a p value <0.05 between MPS I and control mice were further analyzed by nanoLC-MS/MS. These altered proteins could be divided into three major groups based on Gene Ontology (GO) terms: proteins involved in metabolism, neurotransmission and cytoskeleton. Cytoskeletal proteins including ACTA1, ACTN4, TUBB4B and DNM1 were significantly downregulated. STXBP1, a regulator of synaptic vesicle fusion and docking was also downregulated, indicating impaired synaptic transmission. Additionally, proteins regulating Ca2+ and H+ homeostasis including ATP6V1B2 and RYR3 were downregulated, which may be related to disrupted autophagic and endocytotic pathways. Notably, there is no altered expression in proteins associated with cell death, ubiquitin or inflammation. These results for the first time highlight the important role of alterations in metabolism pathways, intracellular ionic homeostasis and the cytoskeleton in the neuropathology of MPS I disease. The proteins identified in this study would provide potential biomarkers for diagnostic and therapeutic studies of MPS I.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Michael J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
21
|
Ravi S, Peña KA, Chu CT, Kiselyov K. Biphasic regulation of lysosomal exocytosis by oxidative stress. Cell Calcium 2016; 60:356-362. [PMID: 27593159 DOI: 10.1016/j.ceca.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 02/02/2023]
Abstract
Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca2+. We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.
Collapse
Affiliation(s)
- Sreeram Ravi
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Karina A Peña
- Department of Biological Sciences, Pittsburgh, PA 15260, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, Pittsburgh, PA 15260, USA.
| |
Collapse
|
22
|
Polishchuk EV, Polishchuk RS. The emerging role of lysosomes in copper homeostasis. Metallomics 2016; 8:853-62. [PMID: 27339113 DOI: 10.1039/c6mt00058d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.
Collapse
Affiliation(s)
- Elena V Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli (NA), 80078, Italy.
| | | |
Collapse
|
23
|
Sardiello M. Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Ann N Y Acad Sci 2016; 1371:3-14. [PMID: 27299292 PMCID: PMC5032832 DOI: 10.1111/nyas.13131] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The lysosome is the main catabolic hub of the cell. Owing to its role in fundamental processes such as autophagy, plasma membrane repair, mTOR signaling, and maintenance of cellular homeostasis, the lysosome has a profound influence on cellular metabolism and human health. Indeed, inefficient or impaired lysosomal function has been implicated in the pathogenesis of a number of degenerative diseases affecting various organs and tissues, most notably the brain, liver, and muscle. The discovery of the coordinated lysosomal expression and regulation (CLEAR) genetic program and its master controller, transcription factor EB (TFEB), has provided an unprecedented tool to study and manipulate lysosomal function. Most lysosome-based processes-including macromolecule degradation, autophagy, lysosomal exocytosis, and proteostasis-are under the transcriptional control of TFEB. Interestingly, impaired TFEB signaling has been suggested to be a contributing factor in the pathogenesis of several degenerative storage diseases. Preclinical studies based on TFEB exogenous expression to reinstate TFEB activity or promote CLEAR network-based lysosomal enhancement have highlighted TFEB as a candidate therapeutic target for the treatment of various degenerative storage diseases.
Collapse
Affiliation(s)
- Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| |
Collapse
|
24
|
Kiselyov K, Muallem S. ROS and intracellular ion channels. Cell Calcium 2016; 60:108-14. [PMID: 26995054 DOI: 10.1016/j.ceca.2016.03.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Oxidative stress is a well-known driver of numerous pathological processes involving protein and lipid peroxidation and DNA damage. The resulting increase of pro-apoptotic pressure drives tissue damage in a host of conditions, including ischemic stroke and reperfusion injury, diabetes, death in acute pancreatitis and neurodegenerative diseases. Somewhat less frequently discussed, but arguably as important, is the signaling function of oxidative stress stemming from the ability of oxidative stress to modulate ion channel activity. The evidence for the modulation of the intracellular ion channels and transporters by oxidative stress is constantly emerging and such evidence suggests new regulatory and pathological circuits that can be explored towards new treatments for diseases in which oxidative stress is an issue. In this review we summarize the current knowledge on the effects of oxidative stress on the intracellular ion channels and transporters and their role in cell function.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| | - Shmuel Muallem
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States; Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch NIH, NIDCR, Bethesda, MD 20892, United States.
| |
Collapse
|