1
|
Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, Diez JJ, Niño-Sánchez J. Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:801-825. [PMID: 39912551 DOI: 10.1111/jipb.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Sergio Diez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| |
Collapse
|
2
|
Asseri AH, Islam MR, Alghamdi RM, Altayb HN. Identification of natural antimicrobial peptides mimetic to inhibit Ca 2+ influx DDX3X activity for blocking dengue viral infectivity. J Bioenerg Biomembr 2024; 56:125-139. [PMID: 38095733 DOI: 10.1007/s10863-023-09996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2024]
Abstract
Viruses are microscopic biological entities that can quickly invade and multiply in a living organism. Each year, over 36,000 people die and nearly 400 million are infected with the dengue virus (DENV). Despite dengue being an endemic disease, no targeted and effective antiviral peptide resource is available against the dengue species. Antiviral peptides (AVPs) have shown tremendous ability to fight against different viruses. Accelerating antiviral drug discovery is crucial, particularly for RNA viruses. DDX3X, a vital cell component, supports viral translation and interacts with TRPV4, regulating viral RNA metabolism and infectivity. Its diverse signaling pathway makes it a potential therapeutic target. Our study focuses on inhibiting viral RNA translation by blocking the activity of the target gene and the TRPV4-mediated Ca2+ cation channel. Six major proteins from camel milk were first extracted and split with the enzyme pepsin. The antiviral properties were then analyzed using online bioinformatics programs, including AVPpred, Meta-iAVP, AMPfun, and ENNAVIA. The stability of the complex was assessed using MD simulation, MM/GBSA, and principal component analysis. Cytotoxicity evaluations were conducted using COPid and ToxinPred. The top ten AVPs, determined by optimal scores, were selected and saved for docking studies with the GalaxyPepDock tools. Bioinformatics analyses revealed that the peptides had very short hydrogen bond distances (1.8 to 3.6 Å) near the active site of the target protein. Approximately 76% of the peptide residues were 5-11 amino acids long. Additionally, the identified peptide candidates exhibited desirable properties for potential therapeutic agents, including a net positive charge, moderate toxicity, hydrophilicity, and selectivity. In conclusion, this computational study provides promising insights for discovering peptide-based therapeutic agents against DENV.
Collapse
Affiliation(s)
- Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Md Rashedul Islam
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, 6204, Bangladesh
| | - Reem M Alghamdi
- Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Wei X, Yang M. Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Front Pharmacol 2023; 14:1180794. [PMID: 37089933 PMCID: PMC10117787 DOI: 10.3389/fphar.2023.1180794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Breast cancer (BC) is the most prevalent malignant tumor, surpassing lung cancer as the most frequent malignancy in women. Drug resistance, metastasis, and immune escape are the major factors affecting patient survival and represent a huge challenge in BC treatment in clinic. The cell- and subcellular organelle-targeting nanoparticles-mediated targeted BC therapy may be an effective modality for immune evasion, metastasis, and drug resistance. Nanocarriers, efficiently delivering small molecules and macromolecules, are used to target subcellular apparatuses with excellent targeting, controlled delivery, and fewer side effects. This study summarizes and critically analyzes the latest organic nanoparticle-mediated subcellular targeted therapeutic based on chemotherapy, gene therapy, immunotherapy, and combination therapy in detail, and discusses the challenges and opportunities of nanoparticle therapy.
Collapse
Affiliation(s)
- Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Ming Yang,
| |
Collapse
|
4
|
Martín AL, Mounir M, Meyer IM. CoBold: a method for identifying different functional classes of transient RNA structure features that can impact RNA structure formation in vivo. Nucleic Acids Res 2021; 49:e19. [PMID: 33095878 PMCID: PMC7913772 DOI: 10.1093/nar/gkaa900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 11/14/2022] Open
Abstract
RNA structure formation in vivo happens co-transcriptionally while the transcript is being made. The corresponding co-transcriptional folding pathway typically involves transient RNA structure features that are not part of the final, functional RNA structure. These transient features can play important functional roles of their own and also influence the formation of the final RNA structure in vivo. We here present CoBold, a computational method for identifying different functional classes of transient RNA structure features that can either aid or hinder the formation of a known reference RNA structure. Our method takes as input either a single RNA or a corresponding multiple-sequence alignment as well as a known reference RNA secondary structure and identifies different classes of transient RNA structure features that could aid or prevent the formation of the given RNA structure. We make CoBold available via a web-server which includes dedicated data visualisation.
Collapse
Affiliation(s)
- Adrián López Martín
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Mohamed Mounir
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Irmtraud M Meyer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany.,Freie Universität Berlin, Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
5
|
Meng J, Counsell J, Morgan JE. Effects of Mini-Dystrophin on Dystrophin-Deficient, Human Skeletal Muscle-Derived Cells. Int J Mol Sci 2020; 21:E7168. [PMID: 32998454 PMCID: PMC7582244 DOI: 10.3390/ijms21197168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We are developing a novel therapy for Duchenne muscular dystrophy (DMD), involving the transplantation of autologous, skeletal muscle-derived stem cells that have been genetically corrected to express dystrophin. Dystrophin is normally expressed in activated satellite cells and in differentiated muscle fibres. However, in past preclinical validation studies, dystrophin transgenes have generally been driven by constitutive promoters that would be active at every stage of the myogenic differentiation process, including in proliferating muscle stem cells. It is not known whether artificial dystrophin expression would affect the properties of these cells. AIMS Our aims are to determine if mini-dystrophin expression affects the proliferation or myogenic differentiation of DMD skeletal muscle-derived cells. METHODS Skeletal muscle-derived cells from a DMD patient were transduced with lentivirus coding for mini-dystrophins (R3-R13 spectrin-like repeats (ΔR3R13) or hinge2 to spectrin-like repeats R23 (ΔH2R23)) with EGFP (enhanced green fluorescence protein) fused to the C-terminus, driven by a constitutive promoter, spleen focus-forming virus (SFFV). Transduced cells were purified on the basis of GFP expression. Their proliferation and myogenic differentiation were quantified by ethynyl deoxyuridine (EdU) incorporation and fusion index. Furthermore, dystrophin small interfering ribonucleic acids (siRNAs) were transfected to the cells to reverse the effects of the mini-dystrophin. Finally, a phospho-mitogen-activated protein kinase (MAPK) array assay was performed to investigate signalling pathway changes caused by dystrophin expression. RESULTS Cell proliferation was not affected in cells transduced with ΔR3R13, but was significantly increased in cells transduced with ΔH2R23. The fusion index of myotubes derived from both ΔR3R13- and ΔH2R23 -expressing cells was significantly compromised in comparison to myotubes derived from non-transduced cells. Dystrophin siRNA transfection restored the differentiation of ΔH2R23-expressing cells. The Erk1/2- signalling pathway is altered in cells transduced with mini-dystrophin constructs. CONCLUSIONS Ectopic expression of dystrophin in cultured human skeletal muscle-derived cells may affect their proliferation and differentiation capacity. Caution should be taken when considering genetic correction of autologous stem cells to express dystrophin driven by a constitutive promoter.
Collapse
MESH Headings
- Cell Differentiation
- Cell Engineering/methods
- Cell Proliferation
- Dystrophin/antagonists & inhibitors
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Lentivirus/genetics
- Lentivirus/metabolism
- MAP Kinase Signaling System
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Plasmids/chemistry
- Plasmids/metabolism
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Spectrin/genetics
- Spectrin/metabolism
- Transduction, Genetic
- Transgenes
Collapse
Affiliation(s)
- Jinhong Meng
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| | - John Counsell
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| | - Jennifer E. Morgan
- Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (J.M.); (J.C.)
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK
| |
Collapse
|
6
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Basiri B, Xie F, Wu B, Humphreys SC, Lade JM, Thayer MB, Yamaguchi P, Florio M, Rock BM. Introducing an In Vitro Liver Stability Assay Capable of Predicting the In Vivo Pharmacodynamic Efficacy of siRNAs for IVIVC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:725-736. [PMID: 32771924 PMCID: PMC7415771 DOI: 10.1016/j.omtn.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
There has been a renewed interest in therapeutic small interfering RNAs (siRNAs) over the past few years. This is particularly the result of successful and efficient delivery of N-acetylgalactosamine (GalNAc)-conjugated siRNAs to the liver. In general, the lead selection process for siRNA drugs is faster and more straightforward than traditional small molecules. Nevertheless, many siRNAs of different sequences and chemical modification patterns must still be evaluated before arriving at a final candidate. One of the major difficulties in streamlining this workflow is the well-known phenomenon that the in vitro data obtained from oligonucleotides transfected into cells are not directly predictive of their in vivo activity. Consequently, all oligonucleotides with some degree of in vitro activity are typically screened in vivo before final lead selection. Here, we demonstrate that the stability of liver-targeting GalNAc-conjugated siRNAs in a mouse liver homogenate shows an acceptable correlation to their in vivo target knockdown efficacy. Therefore, we suggest the incorporation of an in vitro liver homogenate stability assay during the lead optimization process for siRNAs. The addition of this assay to a flow scheme may decrease the need for animal studies, and it could bring cost savings and increase efficiency in siRNA drug development.
Collapse
Affiliation(s)
- Babak Basiri
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA.
| | - Fang Xie
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Bin Wu
- Amgen Research, Hybrid Modality Engineering, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sara C Humphreys
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Julie M Lade
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Mai B Thayer
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Pam Yamaguchi
- Amgen Research, Cardiometabolic Disorders, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Monica Florio
- Amgen Research, Cardiometabolic Disorders, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Brooke M Rock
- Amgen Research, Pharmacokinetics and Drug Metabolism, 1120 Veterans Blvd., South San Francisco, CA 94080, USA
| |
Collapse
|
8
|
Posiri P, Thongsuksangcharoen S, Chaysri N, Panyim S, Ongvarrasopone C. PmEEA1, the early endosomal protein is employed by YHV for successful infection in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2019; 95:449-455. [PMID: 31678535 DOI: 10.1016/j.fsi.2019.10.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Yellow head disease (YHD) is an infectious disease of Penaeus monodon which is caused by the yellow head virus (YHV). YHV infection invariably leads to 100% shrimp mortality within 3-5 days. Currently, an effective method to prevent or cure shrimp from YHV infection has not been elucidated. Therefore, the molecular mechanism underlying YHV infection should be examined. In this study, early endosome antigen 1 (EEA1) protein that was involved in the tethering step of the vesicle and early endosome fusion was investigated during YHV infection. The open reading frame of P. monodon EEA1 (PmEEA1) was cloned and sequenced (3000 bp). It encoded a putative protein of 999 amino acids and contained the zinc finger C2H2 domain signature at the N-terminus and the FYVE domain at the C-terminus. Suppression of PmEEA1 by specific dsRNA in shrimp showed inhibition of YHV replication after 48 h post YHV injection (hpi). On the other hand, shrimp received only NaCl without any dsRNA showed high YHV levels at approximately one hundred thousand times at 24 hpi and 48 hpi. Moreover, silencing of PmEEA1 by specific dsRNA followed by YHV challenge demonstrated a delay in shrimp mortality from 60 hpi to 168 hpi when compared to the control. These results indicated that YHV required PmEEA1 for trafficking within the infected cells, strongly suggesting that PmEEA1 may be a potential target to control and prevent YHV infection in P. monodon.
Collapse
Affiliation(s)
- Pratsaneeyaporn Posiri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | | | - Nattawadee Chaysri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
9
|
Guru Vishnu P, Bhattacharya TK, Bhushan B, Kumar P, Chatterjee RN, Paswan C, Dushyanth K, Divya D, Prasad AR. In silico prediction of short hairpin RNA and in vitro silencing of activin receptor type IIB in chicken embryo fibroblasts by RNA interference. Mol Biol Rep 2019; 46:2947-2959. [PMID: 30879273 DOI: 10.1007/s11033-019-04756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Gene silencing by RNA interference is extensively used reverse genetic approach to analyse the implications of any gene in mammalian systems. The silencing of the Activin type IIB receptor belonging to transforming growth factor beta superfamily has demonstrated increase in muscle growth in many species. We designed five short hairpin RNA constructs targeting coding region of chicken ACTRIIB. All the shRNAs were transfected into chicken embryo fibroblast cells and evaluated their silencing efficiency by real time PCR and western blotting. Initially the computational analysis of target region and shRNA constructs was undertaken to predict sequence based features (secondary structures, GC% and H-b index) and thermodynamic features (ΔGoverall, ΔGduplex, ΔGbreak-target, ΔGintra-oligomer, ΔGinter-oligomer and ΔΔGends). We determined that all these predicted features were associated with shRNA efficacy. The invitro analysis of shRNA constructs exhibited significant (P < 0.05) reduction in the levels of ACTRIIB at mRNA and protein level. The knock down efficiency of shRNAs varied significantly (P < 0.001) from 83% (shRNA 1) to 43% (shRNA 5). All the shRNAs up regulated the myogenic pathway associated genes (MyoD and MyoG) significantly (P < 0.05). There was significant (P < 0.05) up-regulation of IFNA, IFNB and MHCII transcripts. The ACTRIIB expression was inversely associated with the expression of myogenic pathway and immune response genes. The anti ACTRIIB shRNA construct 1 and 3 exhibited maximum knock down efficiency with minimal interferon response, and can be used for generating ACTRIIB knockdown chicken with higher muscle mass.
Collapse
Affiliation(s)
- P Guru Vishnu
- Sri Venkateswara Veterinary University, Tirupathi, A.P., India.
| | | | - Bharat Bhushan
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Pushpendra Kumar
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | - K Dushyanth
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - D Divya
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - A Rajendra Prasad
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| |
Collapse
|
10
|
Alagia A, Jorge AF, Aviñó A, Cova TFGG, Crehuet R, Grijalvo S, Pais AACC, Eritja R. Exploring PAZ/3'-overhang interaction to improve siRNA specificity. A combined experimental and modeling study. Chem Sci 2018; 9:2074-2086. [PMID: 29719684 PMCID: PMC5896489 DOI: 10.1039/c8sc00010g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022] Open
Abstract
The understanding of the dynamical and mechanistic aspects that lie behind siRNA-based gene regulation is a requisite to boost the performance of siRNA therapeutics. A systematic experimental and computational study on the 3'-overhang structural requirements for the design of more specific and potent siRNA molecules was carried out using nucleotide analogues differing in structural parameters, such as sugar constraint, lack of nucleobase, distance between the phosphodiester backbone and nucleobase, enantioselectivity, and steric hindrance. The results established a set of rules governing the siRNA-mediated silencing, indicating that the thermodynamic stability of the 5'-end is a crucial determinant for antisense-mediated silencing but is not sufficient to avoid sense-mediated silencing. Both theoretical and experimental approaches consistently evidence the existence of a direct connection between the PAZ/3'-overhang binding affinity and siRNA's potency and specificity. An overall description of the systems is thus achieved by atomistic simulations and free energy calculations that allow us to propose a robust and self-contained procedure for studying the factors implied in PAZ/3'-overhang siRNA interactions. A higher RNAi activity is associated with a moderate-to-strong PAZ/3'-overhang binding. Contrarily, lower binding energies compromise siRNA potency, increase specificity, and favor siRNA downregulation by Ago2-independent mechanisms. This work provides in-depth details for the design of powerful and safe synthetic nucleotide analogues for substitution at the 3'-overhang, enabling some of the intrinsic siRNA disadvantages to be overcome.
Collapse
Affiliation(s)
- Adele Alagia
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona 18-26 , E-08034 Barcelona , Spain . ; ; Tel: +34 934006145
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| | - Andreia F Jorge
- CQC , Department of Chemistry , University of Coimbra , Rua Larga , 3004-535 Coimbra , Portugal .
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona 18-26 , E-08034 Barcelona , Spain . ; ; Tel: +34 934006145
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| | - Tânia F G G Cova
- CQC , Department of Chemistry , University of Coimbra , Rua Larga , 3004-535 Coimbra , Portugal .
| | - Ramon Crehuet
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona 18-26 , E-08034 Barcelona , Spain . ; ; Tel: +34 934006145
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona 18-26 , E-08034 Barcelona , Spain . ; ; Tel: +34 934006145
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| | - Alberto A C C Pais
- CQC , Department of Chemistry , University of Coimbra , Rua Larga , 3004-535 Coimbra , Portugal .
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Jordi Girona 18-26 , E-08034 Barcelona , Spain . ; ; Tel: +34 934006145
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| |
Collapse
|
11
|
Huang JY, Yu PH, Li YC, Kuo PL. NLRP7 contributes to in vitro decidualization of endometrial stromal cells. Reprod Biol Endocrinol 2017; 15:66. [PMID: 28810880 PMCID: PMC5558772 DOI: 10.1186/s12958-017-0286-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NACHT), leucine rich repeat (LRR) and pyrin domain (PYD) 7 containing protein, NLRP7, is a member of the NLR family which serves as innate immune sensors. Mutations and genetic variants of NLRP7 have been found in women with infertility associated conditions, such as recurrent hydatidiform mole, recurrent miscarriage, and preeclampsia. Decidualization of endometrial stromal cells is a hallmark of tissue remodeling to support embryo implantation and proper placental development. Given defective decidualization has been implicated in miscarriage as well as preeclampsia, we aimed to explore the link between the NLRP7 gene and decidualization. METHODS Endometrial samples obtained from pregnant women in the first trimester and non-pregnant women were used to study NLRP7 expression pattern. The human telomerase reverse transcriptase (hTERT)-immortalized human endometrial stromal cells (T-HESCs) were used to study the effect of NLRP7 on decidualization. Decidualization of T-HESCs was induced with 1 μM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP). siRNA was used to knock down NLRP7 while lentiviral vectors were used to overexpress NLRP7 in cells. NLRP7 expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Decidualization markers, Insulin-like growth factor-binding protein 1 (IGFBP-1) and prolactin (PRL), were detected by qRT-PCR and ELISA. Nuclear translocation of NLRP7 was detected by the subcellular fractionation and confocal microscopy. The effect of NLRP7 on progesterone receptor (PR) activity was evaluated by a reporter system. RESULTS NLRP7 was up-regulated in the decidual stromal cells of human first-trimester endometrium. After in vitro decidualization, T-HESCs presented with the swollen phenotype and increased expressions of IGFBP-1 and PRL. Knockdown or over-expression of NLRP7 reduced or enhanced the decidualization, respectively, according to the expression level of IGFBP-1. NLRP7 was found to translocate in the nucleus of decidualized T-HESCs and able to promote PR activity. CONCLUSIONS NLRP7 was upregulated and translocated to the nucleus of the endometrial stromal cells in an in vitro decidualization model. Overexpressed NLRP7 promoted the IGFBP-1 expression and PR reporter activation. IGFBP-1 expression decreased with the knockdown of NLRP7. Therefore, we suggest that NLRP7 contributes to in vitro decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South Dist, Taichung City, 402, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan.
| |
Collapse
|
12
|
Ngamcherdtrakul W, Castro DJ, Gu S, Morry J, Reda M, Gray JW, Yantasee W. Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat Rev 2016; 45:19-29. [PMID: 26930249 DOI: 10.1016/j.ctrv.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
This Review discusses the various types of non-coding oligonucleotides, which have garnered extensive interest as new alternatives for targeted cancer therapies over small molecule inhibitors and monoclonal antibodies. These oligonucleotides can target any hallmark of cancer, no longer limited to so-called "druggable" targets. Thus, any identified gene that plays a key role in cancer progression or drug resistance can be exploited with oligonucleotides. Among them, small-interfering RNAs (siRNAs) are frequently utilized for gene silencing due to the robust and well established mechanism of RNA interference. Despite promising advantages, clinical translation of siRNAs is hindered by the lack of effective delivery platforms. This Review provides general criteria and consideration of nanoparticle development for systemic siRNA delivery. Different classes of nanoparticle candidates for siRNA delivery are discussed, and the progress in clinical trials for systemic cancer treatment is reviewed. Lastly, this Review presents HER2 (human epidermal growth factor receptor type 2)-positive breast cancer as one example that could benefit significantly from siRNA technology. How siRNA-based therapeutics can overcome cancer resistance to such therapies is discussed.
Collapse
Affiliation(s)
- Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - David J Castro
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA.
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|