1
|
Rithvik A, Wadhavane S, Rasool M. Decoding poly (RC)-binding protein 1 (PCBP1), the underrated guard at the foothill of ferroptosis. Pathol Res Pract 2025; 266:155771. [PMID: 39700662 DOI: 10.1016/j.prp.2024.155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
PCBP1 is a multifunctional adaptor protein, whose function as an iron chaperone and epigenetic regulator of several chemical messengers involved in ferroptosis has garnered much attention. Herein, this review, several attempts have been made to simplify our understanding of the complex roles of PCBP1. The review begins by elucidating the relevance of PCBP1 in key events governing ferroptosis. We expeditiously shed light on some of the important mechanisms that have critical implications for the ferroptosis landscape. For instance, senescence, EMT, hypoxia, and regulation of the cell cycle and immune checkpoints, among others, have been demonstrated to influence ferroptosis sensitivity to varying degrees. Thus, this review entails a conscious attempt to carefully examine the relevance of PCBP1 in such potential mechanisms. Furthermore, we investigated the therapeutic relevance of PCBP1 in tumor biology and autoimmunity, while underscoring the contrasting perspective of ferroptosis targeting across the disease spectrum. Finally, we debate the different strategies that can be exploited to target PCBP1 in promoting or inhibiting ferroptosis.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sakshi Wadhavane
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Xiong X, Huang B, Gan Z, Liu W, Xie Y, Zhong J, Zeng X. Ubiquitin-modifying enzymes in thyroid cancer:Mechanisms and functions. Heliyon 2024; 10:e34032. [PMID: 39091932 PMCID: PMC11292542 DOI: 10.1016/j.heliyon.2024.e34032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.
Collapse
Affiliation(s)
- Xingmin Xiong
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - BenBen Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Zhe Gan
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weixiang Liu
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Naboulsi W, Planatscher H, Schmidt FF, Steinhilber A, Joos TO, Adedeji AO, McDuffie JE, Poetz O. Immunoaffinity proteomics for kidney injury biomarkers in male beagle dogs. EXCLI JOURNAL 2024; 23:180-197. [PMID: 38487082 PMCID: PMC10938254 DOI: 10.17179/excli2023-6621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Drug-induced kidney injury (DIKI) is a cause of drug development failure. Dogs represent a common non-rodent animal model in pre-clinical safety studies; however, biomarker assays for detecting nephrotoxicity in dogs are limited. To identify novel proteins and gain insight into the molecular mechanisms involved in DIKI, we developed an assay to evaluate proteomic changes associated with DIKI in male beagle dogs that received nephrotoxic doses of tobramycin for 10 consecutive days. Label-free quantitative discovery proteomics analysis on representative kidney cortex tissues collected on Day 11 showed that the tobramycin-induced kidney injury led to a significant differential regulation of 94 proteins mostly associated with mechanisms of nephrotoxicity such as oxidative stress and proteasome degradation. For verification of the proteomic results, we developed a multiplex peptide-centric immunoaffinity liquid chromatography tandem mass spectrometry assay (IA LC-MS/MS) to evaluate the association of eight DIKI protein biomarker candidates using kidney cortices collected on Day 11 and urine samples collected on Days -4, 1, 3, 7 and 10. The results showed that most biomarkers evaluated were detected in the kidney cortices and their expression profile in tissue aligned with the label-free data. Cystatin C was the most consistent marker regardless of the magnitude of the renal injury while fatty acid-binding protein-4 (FABP4) and kidney injury molecule-1 (KIM-1) were the most affected biomarkers in response to moderate proximal tubular injury in absence of changes in serum-based concentrations of blood urea nitrogen or creatinine. In the urine, clusterin is considered the most consistent biomarker regardless of the magnitude and time of the renal injury. To our knowledge, this is the most comprehensive multiplex assay for the quantitative analysis of mechanism-based proximal tubular injury biomarkers in dogs.
Collapse
Affiliation(s)
| | | | | | | | - Thomas O. Joos
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Adeyemi O. Adedeji
- Department of Safety Assessment, Genentech, A Member of the Roche Group, South San Francisco, CA, USA
| | - J. Eric McDuffie
- Janssen Pharmaceutical Research & Development LLC, San Diego, California, USA
- Neurocrine Biosciences, Inc., San Diego, California, USA
| | - Oliver Poetz
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| |
Collapse
|
5
|
Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers (Basel) 2022; 14:cancers14071610. [PMID: 35406382 PMCID: PMC8996999 DOI: 10.3390/cancers14071610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
There is evidence that posttranslational modifications, including phosphorylation, acetylation, methylation, ubiquitination, sumoylation, glycosylation, and succinylation, may be involved in thyroid cancer. We review recent reports supporting a role of posttranslational modifications in the tumorigenesis of thyroid cancer, sensitivity to radioiodine and other types of treatment, the identification of molecular treatment targets, and the development of molecular markers that may become useful as diagnostic tools. An increased understanding of posttranslational modifications may be an important supplement to the determination of alterations in gene expression that has gained increasing prominence in recent years.
Collapse
|
6
|
Xie C, Long F, Li L, Li X, Ma M, Lu Z, Wu R, Zhang Y, Huang L, Chou J, Gong N, Hu G, Lin C. PTBP3 modulates P53 expression and promotes colorectal cancer cell proliferation by maintaining UBE4A mRNA stability. Cell Death Dis 2022; 13:128. [PMID: 35136024 PMCID: PMC8826374 DOI: 10.1038/s41419-022-04564-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
The RNA binding protein PTBP3 was recently reported to play a critical role in multiple cancers, and the molecular mechanisms involved RNA splicing, 3' end processing and translation. However, the role of PTBP3 in colorectal cancer (CRC) remains poorly explored. Herein, PTBP3 was upregulated in CRC and associated with a poor prognosis. PTBP3 knockdown in colorectal cancer cell lines restricted CRC proliferative capacities in vitro and in vivo. Mechanistically, PTBP3 regulated the expression of the E3 ubiquitin ligase UBE4A by binding the 3' UTR of its mRNA, preventing its degradation. UBE4A participated in P53 degradation, and PTBP3 knockdown in colorectal cancer cell lines showed increased P53 expression. UBE4A overexpression rescued PTBP3 knockdown-induced inhibition of CRC cell proliferation and P53 expression. Our results demonstrated that PTBP3 plays an essential role in CRC cell proliferation by stabilizing UBE4A to regulate P53 expression and may serve as a new prognostic biomarker and effective therapeutic target for CRC.
Collapse
Affiliation(s)
- Canbin Xie
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Jing Chou
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
- School of Life Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
7
|
Li Y, Tian D, Chen H, Cai Y, Chen S, Duan S. MicroRNA-490-3p and -490-5p in carcinogenesis: Separate or the same goal? Oncol Lett 2021; 22:678. [PMID: 34345303 PMCID: PMC8323007 DOI: 10.3892/ol.2021.12939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miR)-490-3p and miR-490-5p, located on chromosome 7q33, are two independent mature products of miR-490 exerting distinct effects on tumor progression. miR-490-3p and miR-490-5p possess antitumor properties. miR-490-3p dysfunction has been associated with malignancies including colorectal cancer, while the abnormal function of miR-490-5p has been more considerably associated with bladder cancer (for example). At present, there are 30 and 11 target genes of miR-490-3p and miR-490-5p, respectively, that have been experimentally verified, of which the cyclin D1 (CCND1) gene is a common target. Through these target genes, miR-490-3p and miR-490-5p are involved in 7 and 3 signaling pathways, respectively, of which only 2 are shared regulatory signaling pathways. The present review introduces two competing endogenous RNA (ceRNA) regulatory networks centered on miR-490-3p and miR-490-5p. These networks may be important promoters of tumor cell proliferation, invasiveness, metastatic potential and apoptosis. Unlike miR-490-5p, miR-490-3p plays a unique role in promoting cancer. However, both are promising molecular markers for early cancer diagnosis and prognosis. In addition, miR-490-3p was also found to be associated with the chemical resistance of cisplatin and paclitaxel. The present review focuses on the abnormal expression of miR-490-3p and miR-490-5p in different tumor types, and their complex ceRNA regulatory networks. The clinical value of miR-490-3p and miR-490-5p in cancer diagnosis, prognosis and treatment is also clarified, and an explanation for the opposing effects of miR-490-3p in tumor research is provided.
Collapse
Affiliation(s)
- Yin Li
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Dongmei Tian
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Hao Chen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Yuanting Cai
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Sang Chen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
8
|
Biallelic UBE4A loss-of-function variants cause intellectual disability and global developmental delay. Genet Med 2021; 23:661-668. [PMID: 33420346 DOI: 10.1038/s41436-020-01047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.
Collapse
|
9
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang W, Zhang S, Guan W, Huang Z, Kong J, Huang C, Wang H, Yang S. Poly C Binding Protein 1 Regulates p62/SQSTM1 mRNA Stability and Autophagic Degradation to Repress Tumor Progression. Front Genet 2020; 11:930. [PMID: 32922440 PMCID: PMC7457068 DOI: 10.3389/fgene.2020.00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence show that Poly C Binding Protein 1 (PCBP1) is deleted in distinct types of tumors as a novel tumor suppressor, but its tumor suppression mechanism remains elusive. Here, we firstly describe that downregulation of PCBP1 is significantly associated with clinical ovarian tumor progression. Mechanistically, PCBP1 overexpression affects various autophagy-related genes expression at various expression levels to attenuate the intrinsic cell autophagy, including the autophagy-initiating ULK, ATG12, ATG7 as well as the bona fide marker of autophagosome, LC3B. Accordingly, knockdown of the endogenous PCBP1 in turn enhances autophagy and less cell death. Meanwhile, PCBP1 upregulates p62/SQSTM1 via inhibition p62/SQSTM1 autophagolysome and proteasome degradation as well as its mRNA stability, consequently accompanying with the caspase 3 or 8 activation for tumor cell apoptosis. Importantly, clinical ovary cancer sample analysis consistently validates the relevance of PCBP1 expression to both p62/SQSTM1 and caspase-8 to overall survival, and indicates PCBP1 may be a master player to repress tumor initiation. Taken together, our results uncover the tumorigenic mechanism of PCBP1 depletion and suggest that inhibition of tumor cell autophagy with autophagic inhibitors could be an effective therapeutical strategy for PCBP1-deficient tumor.
Collapse
Affiliation(s)
- Wenliang Zhang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunlong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Zhao L, Wang ZG, Zhang P, Yu XF, Su XJ. Poly r(C) Binding Protein 1 Regulates Posttranscriptional Expression of the Ubiquitin Ligase TRIM56 in Ovarian Cancer. IUBMB Life 2018; 71:177-182. [DOI: 10.1002/iub.1948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Zhao
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Zhi-gang Wang
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Ping Zhang
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Xiu-feng Yu
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| | - Xiao-jie Su
- College of Medical Laboratory Science and Technology; Harbin Medical University at Daqing; Daqing Heilongjiang 163319 China
| |
Collapse
|
12
|
Guo J, Jia R. Splicing factor poly(rC)-binding protein 1 is a novel and distinctive tumor suppressor. J Cell Physiol 2018; 234:33-41. [PMID: 30132844 DOI: 10.1002/jcp.26873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
A lot of evidence has been found on the link between tumorigenesis and the aberrant expression of splicing factors. A number of splicing factors have been reported to be either oncogenic or overexpressed in cancer cells. However, splicing factors can also play negative roles in tumorigenesis. In the current review, we focus on splicing factor poly(rC)-binding protein 1 (PCBP1), a novel tumor suppressor that is characterized by downregulation in many cancer types and shows inhibition of tumor formation and metastasis. Notably, the messenger RNA levels of PCBP1 are not significantly decreased in most cancer types. In fact, PCBP1 protein is often degraded or shows a loss-of-function through phosphorylation in cancer cells. PCBP1 is highly homologous to its family member, PCBP2. Interestingly, PCBP2 appears to be an oncogenic splicing factor. A growing body of evidence has shown that PCBP1 regulates alternative splicing, translation, and RNA stability of many cancer-related genes. Taking together, PCBP1 has distinctive tumor suppressive functions, and increasing PCBP1 expression may represent a new approach for cancer treatment.
Collapse
Affiliation(s)
- Jihua Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|