1
|
Calcagni' A, Staiano L, Zampelli N, Minopoli N, Herz NJ, Di Tullio G, Huynh T, Monfregola J, Esposito A, Cirillo C, Bajic A, Zahabiyon M, Curnock R, Polishchuk E, Parkitny L, Medina DL, Pastore N, Cullen PJ, Parenti G, De Matteis MA, Grumati P, Ballabio A. Loss of the batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat Commun 2023; 14:3911. [PMID: 37400440 DOI: 10.1038/s41467-023-39643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.
Collapse
Affiliation(s)
- Alessia Calcagni'
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | | | - Nadia Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Niculin J Herz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Rachel Curnock
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Luke Parkitny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
2
|
Neuronal genetic rescue normalizes brain network dynamics in a lysosomal storage disorder despite persistent storage accumulation. Mol Ther 2022; 30:2464-2473. [PMID: 35395398 PMCID: PMC9263320 DOI: 10.1016/j.ymthe.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Although neurologic symptoms occur in two-thirds of lysosomal storage disorders (LSDs), for most we do not understand the mechanisms underlying brain dysfunction. A major unanswered question is if the pathogenic hallmark of LSDs, storage accumulation, induces functional defects directly or is a disease bystander. Also, for most LSDs we do not know the impact of loss-of-function in individual cell types. Understanding these critical questions are essential to therapy development. Here, we determined the impact of genetic rescue in distinct cell types on neural circuit dysfunction in CLN3 disease, the most common pediatric dementia and a paradigmatic neurodegenerative LSD. We restored Cln3 expression via AAV-mediated gene delivery and conditional genetic rescue in a CLN3 disease mouse model. Surprisingly, we found that low-level rescue of Cln3 expression in neurons alone normalized clinically-relevant electrophysiologic markers of network dysfunction, despite the presence of substantial residual histopathology, in contrast to restoring expression in astrocytes. Thus, loss of CLN3 function in neurons, not storage accumulation, underlies neurologic dysfunction in CLN3 disease, implying that storage clearance may be an inappropriate target for therapy development and an ineffectual biomarker.
Collapse
|
3
|
Kuper WFE, Talsma HE, Schooneveld MJ, Pott JWR, Huijgen BCH, Wit GC, Hasselt PM, Genderen MM. Recognizing differentiating clinical signs of CLN3 disease (Batten disease) at presentation. Acta Ophthalmol 2021; 99:397-404. [PMID: 33073538 PMCID: PMC8359263 DOI: 10.1111/aos.14630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Purpose To help differentiate CLN3 (Batten) disease, a devastating childhood metabolic disorder, from the similarly presenting early‐onset Stargardt disease (STGD1). Early clinical identification of children with CLN3 disease is essential for adequate referral, counselling and rehabilitation. Methods Medical chart review of 38 children who were referred to a specialized ophthalmological centre because of rapid vision loss. The patients were subsequently diagnosed with either CLN3 disease (18 patients) or early‐onset STGD1 (20 patients). Results Both children who were later diagnosed with CLN3 disease, as children who were later diagnosed with early‐onset STGD1, initially presented with visual acuity (VA) loss due to macular dystrophy at 5–10 years of age. VA in CLN3 disease decreased significantly faster than in STGD1 (p = 0.01). Colour vision was often already severely affected in CLN3 disease while unaffected or only mildly affected in STGD1. Optic disc pallor on fundoscopy and an abnormal nerve fibre layer on optical coherence tomography were common in CLN3 disease compared to generally unaffected in STGD1. In CLN3 disease, dark‐adapted (DA) full‐field electroretinogram (ERG) responses were either absent or electronegative. In early‐onset STGD1, DA ERG responses were generally unaffected. None of the STGD1 patients had an electronegative ERG. Conclusion Already upon presentation at the ophthalmologist, the retina in CLN3 disease is more extensively and more severely affected compared to the retina in early‐onset STGD1. This results in more rapid VA loss, severe colour vision abnormalities and abnormal DA ERG responses as the main differentiating early clinical features of CLN3 disease.
Collapse
Affiliation(s)
- Willemijn F. E. Kuper
- Department of Metabolic Diseases Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Herman E. Talsma
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
| | - Mary J. Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Jan Willem R. Pott
- Department of Ophthalmology University Medical Center GroningenUniversity of Groningen Groningen The Netherlands
| | | | - Gerard C. Wit
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
| | - Peter M. Hasselt
- Department of Metabolic Diseases Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Maria M. Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders Zeist The Netherlands
- Department of Ophthalmology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
5
|
Kuper WFE, van Alfen C, van Eck L, de Man SA, Willemsen MH, van Gassen KLI, Losekoot M, van Hasselt PM. The c.1A > C start codon mutation in CLN3 is associated with a protracted disease course. JIMD Rep 2020; 52:23-27. [PMID: 32154056 PMCID: PMC7052694 DOI: 10.1002/jmd2.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background CLN3 disease is a disorder of lysosomal homeostasis predominantly affecting the retina and the brain. The severity of the underlying mutations in CLN3 particularly determines onset and course of neurological deterioration. Given the highly conserved start codon code among eukaryotic species, we expected a variant in the start codon of CLN3 to give rise to the classical, that is, severe, phenotype. Case series We present three patients with an identical CLN3 genotype (compound heterozygosity for the common 1 kb deletion in combination with a c.1A > C start codon variant) who all displayed a more attenuated phenotype than expected. While their retinal phenotype was similar to as expected in classical CLN3 disease, their neurological phenotype was delayed. Two patients had an early onset of cognitive impairment, but a particularly slow deterioration afterwards without any obvious motor impairment. The third patient also had a late onset of cognitive impairment. Conclusions Contrasting our initial expectations, patients with a start codon variant in CLN3 may display a protracted phenotype. Future work will have to reveal the exact mechanism behind the assumed residual protein synthesis, and determine whether this may be eligible to start codon targeted therapy.
Collapse
Affiliation(s)
- Willemijn F E Kuper
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Claudia van Alfen
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Linda van Eck
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Stella A de Man
- Department of Pediatrics Amphia Hospital Breda The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
| | - Koen L I van Gassen
- Department of Genetics University Medical Center Utrecht Utrecht The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|