1
|
Rashed ER, Abdel-Rafei MK, Thabet NM. Roles of Simvastatin and Sildenafil in Modulation of Cranial Irradiation-Induced Bystander Multiple Organs Injury in Rats. Inflammation 2021; 44:2554-2579. [PMID: 34420155 DOI: 10.1007/s10753-021-01524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 01/11/2023]
Abstract
In radiobiology and radiation oncology fields, the observation of a phenomenon called radiation-induced bystander effect (RIBE) has introduced the prospect of remotely located tissues' affection. This phenomenon has been broadly developed to involve the concept of RIBE, which are relevant to the radiation-induced response of a distant tissue other than the irradiated one. The current study aimed at investigating each of the RIBE of cranial irradiation on oxidative and inflammatory status in different organs such as liver, kidney, heart, lung, and spleen. Being a vital target of the cholinergic anti-inflammatory response to an inflammatory stimulus, the splenic α-7-nicotinic acetylcholine receptor (α-7nAchR) was evaluated and the hepatic contents of thioredoxin, peroxisome proliferator-activated receptor-alpha and paraoxinase-1 (Trx/PPAR-α/PON) were also assessed as indicators for the liver oxidative stress and inflammatory responses. Being reported to act as antioxidant and anti-inflammatory agents, simvastatin (SV) and/or sildenafil (SD) were investigated for their effects against RIBE on these organs. These objectives were achieved via the biochemical assessments and the histopathological tissues examinations. Five experimental groups, one sham irradiated and four irradiated groups, were exposed to cranial irradiation at dose level of 25 Gy using an experimental irradiator with a Cobalt (Co60) source, RIBE, RIBE + SV (20 mg.(kg.bw)-1 day-1), RIBE + SD (75 mg.(kg.bw)-1 day-1), and RIBE + SV + SD. Cranial irradiation induced structural, biochemical, and functional dys-regulations in non-targeted organs. RIBE-induced organs' injuries have been significantly corrected by the administration of SV and/or SD. Our results suggest the possibility of a potentiated interaction between SV and SD in the modulation of the RIBE associated with head and neck radiotherapy.
Collapse
Affiliation(s)
- Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Noura Magdy Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Reis-Mendes A, Padrão AI, Duarte JA, Gonçalves-Monteiro S, Duarte-Araújo M, Remião F, Carvalho F, Sousa E, Bastos ML, Costa VM. Role of Inflammation and Redox Status on Doxorubicin-Induced Cardiotoxicity in Infant and Adult CD-1 Male Mice. Biomolecules 2021; 11:1725. [PMID: 34827723 PMCID: PMC8615472 DOI: 10.3390/biom11111725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is a topoisomerase II inhibitor commonly used in the treatment of several types of cancer. Despite its efficacy, DOX can potentially cause fatal adverse effects, like cardiotoxicity. This work aimed to assess the role of inflammation in DOX-treated infant and adult mice and its possible link to underlying cardiotoxicity. Two groups of CD-1 male mice of different ages (infants or adults) were subjected to biweekly DOX administrations, to reach a cumulative dose of 18.0 mg/kg, which corresponds approximately in humans to 100.6 mg/m2 for infants and 108.9 mg/m2 for adults a clinically relevant dose in humans. The classic plasmatic markers of cardiotoxicity increased, and that damage was confirmed by histopathological findings in both groups, although it was higher in adults. Moreover, in DOX-treated adults, an increase of cardiac fibrosis was observed, which was accompanied by an increase in specific inflammatory parameters, namely, macrophage M1 and nuclear factor kappa B (NF-κB) p65 subunit, with a trend toward increased levels of the tumor necrosis factor receptor 2 (TNFR2). On the other hand, the levels of myeloperoxidase (MPO) and interleukin (IL)-6 significantly decreased in DOX-treated adult animals. In infants, a significant increase in cardiac protein carbonylation and in the levels of nuclear factor erythroid-2 related factor 2 (Nrf2) was observed. In both groups, no differences were found in the levels of tumor necrosis factor (TNF-α), IL-1β, p38 mitogen-activated protein kinase (p38 MAPK) or NF-κB p52 subunit. In conclusion, using a clinically relevant dose of DOX, our study demonstrated that cardiac effects are associated not only with the intensity of the inflammatory response but also with redox response. Adult mice seemed to be more prone to DOX-induced cardiotoxicity by mechanisms related to inflammation, while infant mice seem to be protected from the damage caused by DOX, possibly by activating such antioxidant defenses as Nrf2.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Padrão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
| | - José Alberto Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.I.P.); (J.A.D.)
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal
| | - Salomé Gonçalves-Monteiro
- Outcomes Research Laboratory, MOREHealth, Outcomes Research Laboratory, Portuguese Institute of Oncology at Porto Francisco Gentil (IPO Porto), 4200-072 Porto, Portugal;
| | - Margarida Duarte-Araújo
- Department of Immuno-Physiology and Pharmacology, ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Lourdes Bastos
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.R.); (F.C.); (M.L.B.)
- UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Efron PA, Darden DB, Wang Z, Nacionales DC, Lopez MC, Hawkins RB, Cox MC, Rincon JC, Ungaro R, Dirain ML, Ghita GL, Chen T, Billiar TR, Delano MJ, Leeuwenburgh C, Bihorac A, Brakenridge SC, Moore FA, Mohr AM, Tompkins RG, Brumback BA, Baker HV, Upchurch GR, Moldawer LL. Transcriptomic responses from improved murine sepsis models can better mimic human surgical sepsis. FASEB J 2020; 35:e21156. [PMID: 33140449 DOI: 10.1096/fj.202002150r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Historically, murine models of inflammation in biomedical research have been shown to minimally correlate with genomic expression patterns from blood leukocytes in humans. In 2019, our laboratory reported an improved surgical sepsis model of cecal ligation and puncture (CLP) that provides additional daily chronic stress (DCS), as well as adhering to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. This model phenotypically recapitulates the persistent inflammation, immunosuppression, and catabolism syndrome observed in adult human surgical sepsis survivors. Whether these phenotypic similarities between septic humans and mice are replicated at the circulating blood leukocyte transcriptome has not been demonstrated. Our analysis, in contrast with previous findings, demonstrated that genome-wide expression in our new murine model more closely approximated human surgical sepsis patients, particularly in the more chronic phases of sepsis. Importantly, our new model of murine surgical sepsis with chronic stress did not reflect well gene expression patterns from humans with community-acquired sepsis. Our work indicates that improved preclinical murine sepsis modeling can better replicate both the phenotypic and transcriptomic responses to surgical sepsis, but cannot be extrapolated to other sepsis etiologies. Importantly, these improved models can be a useful adjunct to human-focused and artificial intelligence-based forms of research in order to improve septic patients' morbidity and mortality.
Collapse
Affiliation(s)
- Philip A Efron
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dijoia B Darden
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhongkai Wang
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dina C Nacionales
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Russell B Hawkins
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael C Cox
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jaimar C Rincon
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ricardo Ungaro
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marvin L Dirain
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gabriela L Ghita
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tianmeng Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J Delano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Azra Bihorac
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Scott C Brakenridge
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Frederick A Moore
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alicia M Mohr
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ronald G Tompkins
- Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Babette A Brumback
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gilbert R Upchurch
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lyle L Moldawer
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front Immunol 2020; 11:2069. [PMID: 32973815 PMCID: PMC7461806 DOI: 10.3389/fimmu.2020.02069] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease have become so far the most important sanitary crisis in the XXI century. In light of the events, any clinical resource should be considered to alleviate this crisis. Severe COVID-19 cases present a so-called cytokine storm as the most life-threatening symptom accompanied by lung fibrosis. Galectin-3 has been widely described as regulator of both processes. Hereby, we present compelling evidences on the potential role of galectin-3 in COVID-19 in the regulation of the inflammatory response, fibrosis and infection progression. Moreover, we provide a strong rationale of the utility of measuring plasma galectin-3 as a prognosis biomarker for COVID-19 patients and propose that inhibition of galectin-3 represents a feasible and promising new therapeutical approach.
Collapse
Affiliation(s)
- Juan Garcia-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, BMC, Lund University, Lund, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Boza-Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Experimental Medical Sciences, Experimental Dementia Research Laboratory, BMC, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Tian Y, Lv W, Lu C, Jiang Y, Yang X, Song M. Galectin-3 inhibition attenuates doxorubicin-induced cardiac dysfunction by upregulating the expression of peroxiredoxin-4. Can J Physiol Pharmacol 2020; 98:700-707. [PMID: 32516552 DOI: 10.1139/cjpp-2019-0700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a highly efficient chemotherapeutic drug limited by its cardiotoxicity. Galectin-3 (Gal-3) overexpression is associated with several cardiovascular diseases. In this study, the in vivo models of DOX-treated rats and the in vitro model of DOX-treated H9C2 cells were used. DOX induced cardiac injury and dysfunction accompanied with the upregulation of Gal-3 at the end of the experiment, while inhibition of Gal-3 with modified citrus pectin (MCP) exhibited a dramatic improvement in cardiac function of the DOX-treated rats, as manifested by increased left ventricular systolic pressure and ±dp/dtmax and decreased left ventricular end-diastolic pressure. The plasma levels of myocardial injury markers such as lactate dehydrogenase, creatine kinase, creatine kinase-MB, and cardiac troponin I were decreased after MCP treatment. In parallel, MCP attenuated myocardial tissue markers of oxidative stress such as hydrogen peroxide and malondialdehyde restored the activities of superoxide dismutase, catalase, and glutathione peroxidase and upregulated antioxidant peroxiredoxin-4 (Prx-4). To further verify the role of Prx-4, it was downregulated by siRNA-mediated knockdown in H9C2 cells. MCP could not reverse DOX-induced oxidative stress in Prx-4-knock-down cells. In conclusion, Gal-3 mediated DOX-induced cardiotoxicity and Gal-3 inhibition attenuated DOX-induced cardiac dysfunction by upregulating the expression of Prx-4 to reduce myocardial oxidative stress.
Collapse
Affiliation(s)
- Yunpeng Tian
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Wei Lv
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Chengzhi Lu
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Yiyao Jiang
- Department of Cardiology and Department of Cardiac Surgery, Tianjin First Central Hospital, Tianjin 300192, People's Republic of China
| | - Xue Yang
- Department of Cardiology, Dalian Municipal Central Hospital, Dalian 116003, People's Republic of China
| | - Minghao Song
- Department of Cardiology, Tongji Hospital of Tongji University, Shanghai 200003, People's Republic of China
| |
Collapse
|
6
|
Li S, Tang T, Guo P, Zou Q, Ao X, Hu L, Tan L. A meta-analysis of randomized controlled trials: Efficacy of selenium treatment for sepsis. Medicine (Baltimore) 2019; 98:e14733. [PMID: 30817625 PMCID: PMC6831114 DOI: 10.1097/md.0000000000014733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To understand the clinical outcomes of selenium therapy in patients with sepsis syndrome, we conducted a meta-analysis of randomized controlled trials (RCT). METHODS A total of 13 RCTs comparing selenium and placebo for patients with sepsis were reviewed systematically. RESULTS However, we could not detect the association of selenium treatment with a decreased mortality at different time course (relative risk [RR] [95% confidence interval, CI]: 0.94 [0.82-1.06] at day 28; 0.73 [0.36-1.47] at day 90; 1.16 [0.78-1.71] at 6 months; respectively). Selenium supplementation did not show favorable efficacy in the incidence of renal failure, secondary infection or duration of mechanical ventilation (RR [95% CI]: 0.65 [0.41-1.03]; 0.96 [0.87-1.06]; standard mean difference [SMD] [95% CI]: 0.17 [-0.30-0.63]; respectively). Interestingly, we found that selenium therapy was benefit for sepsis patients with reduced duration of vasopressor therapy, staying time in intensive care unit and hospital, and incidence of ventilator-associated pneumonia (SMD [95% CI]: -0.75 [-1.37 to -0.13]; -0.15 [CI: -0.25 to -0.04]; -1.22 [-2.44 to -0.01]; RR [95% CI]: 0.61 [0.42-0.89]; respectively). CONCLUSION Based on our findings, intravenous selenium supplementation could not be suggested for routine use.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Emergency, Children's Hospital of Chongqing Medical University
- Ministry of Education Key Laboratory of Child Development and Disorders
| | - Tian Tang
- Department of Emergency, Children's Hospital of Chongqing Medical University
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Pengfei Guo
- Department of Emergency, Children's Hospital of Chongqing Medical University
| | - Qing Zou
- Department of Emergency, Children's Hospital of Chongqing Medical University
| | - Xiaoxiao Ao
- Ministry of Education Key Laboratory of Child Development and Disorders
| | - Lan Hu
- Department of Emergency, Children's Hospital of Chongqing Medical University
| | - Liping Tan
- Department of Emergency, Children's Hospital of Chongqing Medical University
- Key Laboratory of Pediatrics in Chongqing
| |
Collapse
|
7
|
Galectin-3: An Early Marker of Gestational Diabetes, Subclinical Atherosclerosis, and Tumor Progression. Angiology 2019; 71:474. [DOI: 10.1177/0003319719831870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|