1
|
Yu Z, Dong C, Yang Y, Zheng Z, Ge X. USP21 stabilizes immune checkpoint of CD276 and serves as an immunological and tumor prognostic biomarker. Biochem Biophys Res Commun 2024; 745:151221. [PMID: 39736236 DOI: 10.1016/j.bbrc.2024.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Ubiquitin-specific protease 21 (USP21) belongs to the ubiquitin-specific protease family and is a member of the deubiquitinating enzyme (DUB) family. Previous research has shown that USP21 promotes cancer initiation and progression. However, there have been few pan-cancer analysis on USP21. We analyzed the expression levels of USP21 mRNA and protein in various human tumor tissues using several public databases such as The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Human Protein Atlas (HPA). Kaplan-Meier survival analyses were utilized to test the effect of USP21 on overall survival (OS) and progression-free interval (PFS) of these tumor patients. Our study demonstrated that USP21 was differentially expressed between normal and malignant tissues, conferring a notable value in evaluation of prognosis and diagnosis. In addition, enrichment and correlation analyses linking USP21 with immune features such as immune-cell-infiltration rate and immune-checkpoint-gene expression indicated that USP21 is an applicable immunotherapeutic marker for liver cancer. To further elucidate the role of USP21, we downregulated its expression in hepatocellular carcinoma cells and identified a remarkable decrease in expression of the immune checkpoint CD276, which contributes to the immune escape of tumor cells by suppressing the immune system. Together, our results indicated a promising potential of USP21 for future tumor prevention.
Collapse
Affiliation(s)
- Zhu Yu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chengyuan Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yanrong Yang
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Zening Zheng
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Yuan L, Yang R, Deng H. Auricular fistula: a review of its clinical manifestations, genetics, and treatments. J Mol Med (Berl) 2023; 101:1041-1058. [PMID: 37458758 DOI: 10.1007/s00109-023-02343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023]
Abstract
Auricular fistula is a common congenital auricular malformation, characterized as a small opening in the skin and a subcutaneous cyst. It can be classified in different ways according to positions of pits and directions of fistula tracts. The term preauricular fistula and variant type of preauricular fistula (postauricular fistula) are used. Auricular fistula prevalence varies in countries and populations, and its actual prevalence is presently unknown. The most accepted and widely cited theory of auricular fistula etiopathogenesis is an incorrect or incomplete fusion of six auricular hillocks that are mesenchymal proliferations. Auricular fistula can occur either sporadically or genetically. The pattern in inherited cases is thought to be incomplete autosomal dominant, with variable expressions, reduced penetrance, and inapparent gender differences. Auricular fistula has several forms and is reported as being a component of many syndromes. In the field of genetics, currently, there is no related review to comprehensively summarize the genetic basis of auricular fistula and related disorders. This article provides a comprehensive review of auricular fistula, especially congenital preauricular fistula, which accounts for the majority of auricular fistula, by summarizing the clinical manifestations, histological and embryological development, genetics, examinations, and treatments, as well as syndromes with auricular fistula.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ruikang Yang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Disease Genome Research Center, Central South University, Changsha, 410013, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
4
|
Schistosoma japonicum Infection in Treg-Specific USP21 Knockout Mice. J Immunol Res 2021; 2021:6613162. [PMID: 33628844 PMCID: PMC7886505 DOI: 10.1155/2021/6613162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The E3 deubiquitinating enzyme ubiquitin-specific proteolytic enzyme 21 (USP21) plays vital roles in physiological activities and is required for Treg-cell-mediated immune tolerance. Using a murine model infected with Schistosoma japonicum, we observed that there were more cercariae developed into adults and more eggs deposited in the livers of the USP21fl/flFOXP3Cre (KO) mice. However, immunohistochemistry showed that the degree of egg granuloma formation and liver fibrosis was reduced. In USP21fl/flFOXP3Cre mice, levels of IFN-gamma, IL-4, anti-soluble egg antigen (SEA) IgG and anti-soluble worm antigen preparation (SWAP) IgG increased in blood, as determined using ELISAs and multiplex fluorescent microsphere immunoassays, while the levels of IL-10, lL-17A, IL-23, IL-9, and anti-SEA IgM decreased. In addition, the levels of the USP21 protein and mRNA in the liver and spleen of KO mice decreased. We further observed increased Th1 responses amplified by Tregs (regulatory T cells) and compromised Th17 responses, which alleviated the liver immunopathology. We speculated that these changes were related to polarization of Th1-like Tregs. Our results revealed the roles of USP21 in Treg-cell-mediated regulation of immune interactions between Schistosoma and its host. USP21 may have potential for regulating hepatic fibrosis in patients with schistosomiasis.
Collapse
|
5
|
Luo F, Zhou Z, Cai J, Du W. DUB3 Facilitates Growth and Inhibits Apoptosis Through Enhancing Expression of EZH2 in Oral Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1447-1460. [PMID: 32110043 PMCID: PMC7035907 DOI: 10.2147/ott.s230577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background Here, we probed the action mechanism of ubiquitin-specific processing proteases 17 (DUB3) in the evolution of oral squamous cell carcinoma (OSCC). Methods The expression of genes were calculated by qRT-PCR, and proteins were assessed by Western blot and immunohistochemistry. The cells viability and proliferation were checked by MTT and EdU assay, respectively. Flow cytometry was implemented to detect the cell cycle and apoptosis. The activity of EZH2 gene promoter was measured by luciferase reporter assay. Co-immunoprecipitation assay was used to ensure the ubiquitination of bromodomain-containing protein 4 (BRD4). The cell apoptosis of tumor tissues was assessed by TUNEL assay. Results DUB3 was overexpressed in OSCC tissues and cell lines, and negatively correlated with patient’s survival time. DUB3 downregulation could effectively curb OSCC cells viability and proliferation, promote cell apoptosis and the expression of cleaved-caspase-3, cleaved PARP and p21, while inhibit cyclin D1. Besides, DUB3 production was positivity correlated with enhancer of zeste homolog-2 (EZH2) and BRD4. BRD4 downregulation could repress DUB3-induced EZH2 production, and MG132 reversed DUB3 decreasing-mediated BRD4 downregulation. Downregulation of DUB3 promoted BRD4 ubiquitination. DUB3 promoted OSCC cells proliferation, while suppressing apoptosis via facilitating EZH2 production. At last, in vivo experiment indicated that the downregulation of DUB3 significantly inhibited the growth of xenograft tumor. Conclusion In summary, we found that DUB3 enhanced OSCC cells proliferation and xenograft tumor growth, while inhibited their apoptosis via promoting BRD4-mediated upregulation of EZH2. Our study indicated that DUB3 may be an effective anti-cancer target for OSCC therapy.
Collapse
Affiliation(s)
- Fei Luo
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Zunyan Zhou
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Jun Cai
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| | - Wei Du
- Department of Oncology, First People's Hospital of Jinzhou, Jinzhou 434000, People's Republic of China
| |
Collapse
|