1
|
Wang Z, Zhang L, Liu X, Xu L. The role of reproductive tract microbiota in gynecological health and diseases. J Reprod Immunol 2025; 167:104418. [PMID: 39700680 DOI: 10.1016/j.jri.2024.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
The reproductive tract, as a lumen connected to the outside world, its microbial community is influenced by various factors. The changes in its microbiome are closely related to women's health. The destruction of the micro ecological environment will lead to various infections, such as Bacterial vaginosis, sexually transmitted infections, adverse pregnancy outcomes, infertility and tumors. In recent years, with the continuous development and progress of molecular biology, research on reproductive tract microbiota has become a clinical hotspot. The reproductive tract microbiota is closely related to the occurrence and development of female reproductive tract diseases such as vaginitis, pelvic inflammation, PCOS, cervical lesions, and malignant tumors. This article reviews the research on the relationship between vaginal microbiota and female reproductive tract diseases, in order to provide theoretical basis for the prevention and treatment of female reproductive tract diseases.
Collapse
Affiliation(s)
- Zhunan Wang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Liyu Zhang
- Department of gynaecology, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Xin Liu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China
| | - Lan Xu
- Department of gynaecology and obstetrics, Gynecological Diagnosis and Treatment Center, Affliated Hospital of Changchun University of Chinese Medicine, No.2, Shenzhen Street, Changchun city, Jilin Province 130000, China.
| |
Collapse
|
2
|
Wang Y, Liu Z, Chen T. Vaginal microbiota: Potential targets for vulvovaginal candidiasis infection. Heliyon 2024; 10:e27239. [PMID: 38463778 PMCID: PMC10923723 DOI: 10.1016/j.heliyon.2024.e27239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is the second most common cause of vaginal infection globally after bacterial vaginosis (BV) and associated with adverse reproductive and obstetric outcomes, including preterm delivery, sexually transmitted infections and pelvic inflammatory disease. Although effective control of VVC is achievable with the use of traditional treatment strategies (i.e., antifungals), the possibility of drug intolerance, treatment failure and recurrence, as well as the appearance of antifungal-resistant Candida species remain critical challenges. Therefore, alternative therapeutic strategies against VVC are urgently required. In recent years, an improved understanding of the dysbiotic vaginal microbiota (VMB) during VVC has prompted the consideration of administering -biotics to restore the balance of the VMB within the context of VVC prevention and treatment. Here, we aim to summarize the current evidence of the anti-Candida effects of probiotics, postbiotics and synbiotics and their potential use as an alternative/complementary therapy against VVC. Additionally, this review discusses advantages and challenges associated with the application of -biotics in VVC to provide guidance for their later use. We also review new developments in VVC therapy, i.e., vaginal microbiota transplantation (VMT) as an emerging live biotherapeutic therapy against VVC and discuss existing shortcomings associated with this nascent field, expecting to stimulate further investigations for introduction of new therapies against VVC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- School of Pharmacy, National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
3
|
Mitra A, Gultekin M, Burney Ellis L, Bizzarri N, Bowden S, Taumberger N, Bracic T, Vieira-Baptista P, Sehouli J, Kyrgiou M. Genital tract microbiota composition profiles and use of prebiotics and probiotics in gynaecological cancer prevention: review of the current evidence, the European Society of Gynaecological Oncology prevention committee statement. THE LANCET. MICROBE 2024; 5:e291-e300. [PMID: 38141634 DOI: 10.1016/s2666-5247(23)00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 12/25/2023]
Abstract
Female genital tract (FGT) microbiota has been associated with the development of gynaecological cancers. Thus, the possibility of whether manipulation of the FGT microbiota can help in the prevention of disease should be investigated. Various prebiotics, probiotics, and other non-clinician prescribed agents have been reported to have therapeutic effects in cervical disease. Numerous studies have reported an association between human papillomavirus infection and subsequent cervical dysplasia and a decrease in the abundance of Lactobacillus species. A continuum of microbiota composition is observed from the vagina to the upper parts of the FGT, but no evidence suggests that manipulation of the vaginal microbiota can help to modify the composition of other FGT compartments. Although prebiotics and probiotics have been reported to be beneficial, the studies are small and of varying design, and high-quality evidence to support their use is lacking. Currently, no studies have examined these therapeutics in other gynaecological malignancies. Thus, recommendation of probiotics, prebiotics, or other over-the-counter supplements for the prevention of gynaecological cancers warrants larger, well designed studies.
Collapse
Affiliation(s)
- Anita Mitra
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Murat Gultekin
- Division of Gynaecological Oncology, Department of Obstetrics and Gynaecology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Laura Burney Ellis
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Sarah Bowden
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Nadja Taumberger
- Department of Obstetrics & Gynecology, Medical University of Graz, Graz, Austria; Hospital Spittal a d Drau, Carinthia, Austria
| | - Taja Bracic
- Department of Obstetrics & Gynecology, Medical University of Graz, Graz, Austria
| | - Pedro Vieira-Baptista
- Department of Gynecology-Obstetrics and Pediatrics, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
| | - Jalid Sehouli
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction - Surgery and Cancer, Imperial College London, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
4
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Galaz J, Romero R, Greenberg JM, Theis KR, Arenas-Hernandez M, Xu Y, Farias-Jofre M, Miller D, Kanninen T, Garcia-Flores V, Gomez-Lopez N. Host-microbiome interactions in distinct subsets of preterm labor and birth. iScience 2023; 26:108341. [PMID: 38047079 PMCID: PMC10692673 DOI: 10.1016/j.isci.2023.108341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Preterm birth, the leading cause of perinatal morbidity, often follows premature labor, a syndrome whose prevention remains a challenge. To better understand the relationship between premature labor and host-microbiome interactions, we conducted a mechanistic investigation using three preterm birth models. We report that intra-amniotic delivery of LPS triggers inflammatory responses in the amniotic cavity and cervico-vaginal microenvironment, causing vaginal microbiome changes and signs of active labor. Intra-amniotic IL-1α delivery causes a moderate inflammatory response in the amniotic cavity but increasing inflammation in the cervico-vaginal space, leading to vaginal microbiome disruption and signs of active labor. Conversely, progesterone action blockade by RU-486 triggers local immune responses accompanying signs of active labor without altering the vaginal microbiome. Preterm labor facilitates ascension of cervico-vaginal bacteria into the amniotic cavity, regardless of stimulus. This study provides compelling mechanistic insights into the dynamic host-microbiome interactions within the cervico-vaginal microenvironment that accompany premature labor and birth.
Collapse
Affiliation(s)
- Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan M. Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kevin R. Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marcelo Farias-Jofre
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomi Kanninen
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Dos Anjos Borges LG, Pastuschek J, Heimann Y, Dawczynski K, Schleußner E, Pieper DH, Zöllkau J. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med 2023; 21:92. [PMID: 36907851 PMCID: PMC10009945 DOI: 10.1186/s12916-023-02805-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM), which is associated with vaginal dysbiosis, is responsible for up to one-third of all preterm births. Consecutive ascending colonization, infection, and inflammation may lead to relevant neonatal morbidity including early-onset neonatal sepsis (EONS). The present study aims to assess the vaginal microbial composition of PPROM patients and its development under standard antibiotic therapy and to evaluate the usefulness of the vaginal microbiota for the prediction of EONS. It moreover aims to decipher neonatal microbiota at birth as possible mirror of the in utero microbiota. METHODS As part of the PEONS prospective multicenter cohort study, 78 women with PPROM and their 89 neonates were recruited. Maternal vaginal and neonatal pharyngeal, rectal, umbilical cord blood, and meconium microbiota were analyzed by 16S rRNA gene sequencing. Significant differences between the sample groups were evaluated using permutational multivariate analysis of variance and differently distributed taxa by the Mann-Whitney test. Potential biomarkers for the prediction of EONS were analyzed using the MetaboAnalyst platform. RESULTS Vaginal microbiota at admission after PPROM were dominated by Lactobacillus spp. Standard antibiotic treatment triggers significant changes in microbial community (relative depletion of Lactobacillus spp. and relative enrichment of Ureaplasma parvum) accompanied by an increase in bacterial diversity, evenness and richness. The neonatal microbiota showed a heterogeneous microbial composition where meconium samples were characterized by specific taxa enriched in this niche. The vaginal microbiota at birth was shown to have the potential to predict EONS with Escherichia/Shigella and Facklamia as risk taxa and Anaerococcus obesiensis and Campylobacter ureolyticus as protective taxa. EONS cases could also be predicted at a reasonable rate from neonatal meconium communities with the protective taxa Bifidobacterium longum, Agathobacter rectale, and S. epidermidis as features. CONCLUSIONS Vaginal and neonatal microbiota analysis by 16S rRNA gene sequencing after PPROM may form the basis of individualized risk assessment for consecutive EONS. Further studies on extended cohorts are necessary to evaluate how far this technique may in future close a diagnostic gap to optimize and personalize the clinical management of PPROM patients. TRIAL REGISTRATION NCT03819192, ClinicalTrials.gov. Registered on January 28, 2019.
Collapse
Affiliation(s)
- Luiz Gustavo Dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Jana Pastuschek
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Yvonne Heimann
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Kristin Dawczynski
- Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Department of Pediatrics, Section Neonatology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Ekkehard Schleußner
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| | - Janine Zöllkau
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
7
|
Compositional Changes in the Vaginal Bacterial Microbiome of Healthy Pregnant Women across the Three Gestational Trimesters in Ismailia, Egypt. Microorganisms 2023; 11:microorganisms11010139. [PMID: 36677431 PMCID: PMC9862816 DOI: 10.3390/microorganisms11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
The composition of the vaginal microbiome may lead to adverse pregnancy outcomes. Normal pregnancy is associated with changes in the vaginal bacterial community composition, which tend to be more enriched with one or two Lactobacillus species promoting a healthy vagina and favorable birth outcomes. The aim of the current study was to determine compositional changes in the healthy vaginal microbiome composition during the three trimesters of pregnancy in Ismailia, Egypt using Illumina MiSeq sequencing of the V3-V4 region of the 16S rRNA. The phylum Firmicutes and the genus Lactobacillus dominated across the three trimesters of pregnancy. L. iners was the most abundant species. However, L. coleohominis and L. reuteri represented the least dominant vaginal lactobacilli. Core microbiome analyses showed the Lactobacillus genus and L. iners species to have the highest prevalence in all the samples of our study groups. The phylum Firmicutes was found to be negatively correlated with almost all other vaginal phyla during pregnancy. Likewise, a negative correlation between Lactobacillus and almost all other genera was detected, including significant negative correlations with Dialister and Prevotella. Furthermore, negative correlations of L. iners were detected with almost all other species, including a significant negative correlation with L. helveticus, G. vaginalis, S. anginosus, and S. agalactiae.
Collapse
|
8
|
Gao J, Peng Y, Jiang N, Shi Y, Ying C. High-Throughput Sequencing-Based Analysis of Changes in the Vaginal Microbiome during the Disease Course of Patients with Bacterial Vaginosis: A Case-Control Study. BIOLOGY 2022; 11:biology11121797. [PMID: 36552306 PMCID: PMC9775478 DOI: 10.3390/biology11121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Background: The vaginal microbiome is closely associated with the onset and recurrence of bacterial vaginosis (BV). In the present study, the state of vaginal microbiota during the onset and post-treatment asymptomatic stages of BV were compared to that of a healthy population to evaluate the changes in different characteristic bacteria during the onset, progression, and remission of BV. Methods: A case−control study was performed to explore these changes. Women with clinical symptoms of BV were divided into the disease group (M) and case−control group (C) based on the Nugent score. Subjects in the disease group whose symptoms were resolved after the treatment were assigned to the treated group (T) and healthy subjects were recruited into the normal control (N) group. The V3−V4 hypervariable regions of bacterial 16S rRNA genes were sequenced on the Illumina MiSeq platform. Results: The N harbored the highest number of detected species and a higher abundance of microbiota; they had a significantly higher abundance of Lactobacillus and different bacterial community composition compared to the other three groups. In group M, Gardnerella vaginalis was the dominant species, whereas Lactobacillus iners was predominant in the other three groups. While Lactobacillus was more commonly present in Group C compared to group M. it was significantly increased in group T. Alpha diversity analysis of bacterial communities revealed significant differences in community richness and diversity among all four groups (p < 0.05). Significant differences in the distribution of various bacterial communities among the different groups were also observed (p < 0.05). Specifically, the abundance of eight bacterial taxa (Megasphaera, Aerococcus christensenii, Clostridiales, Gardnerella, Peptostreptococcus, Veillonellaceae, Akkermansia, Coriobacteriales) differed significantly among the four groups (p < 0.05). Conclusion: Significant differences in the composition and alpha diversity of the vaginal microbiota at different stages of BV and the distribution of bacterial communities were observed among the investigated groups. In addition to Gardnerella, Sneathia sanguinegens and Prevotella timonensis play an important role in the pathogenesis of BV. The appearance of BV-like clinical symptoms was closely associated with the decrease in Prevotella and Atopobium vaginae populations.
Collapse
|
9
|
Gimeno-Molina B, Muller I, Kropf P, Sykes L. The Role of Neutrophils in Pregnancy, Term and Preterm Labour. Life (Basel) 2022; 12:life12101512. [PMID: 36294949 PMCID: PMC9605051 DOI: 10.3390/life12101512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Neutrophils are surveillance cells, and the first to react and migrate to sites of inflammation and infection following a chemotactic gradient. Neutrophils play a key role in both sterile inflammation and infection, performing a wide variety of effector functions such as degranulation, phagocytosis, ROS production and release of neutrophil extracellular traps (NETs). Healthy term labour requires a sterile pro-inflammatory process, whereas one of the most common causes of spontaneous preterm birth is microbial driven. Peripheral neutrophilia has long been described during pregnancy, and evidence exists demonstrating neutrophils infiltrating the cervix, uterus and foetal membranes during both term and preterm deliveries. Their presence supports a role in tissue remodelling via their effector functions. In this review, we describe the effector functions of neutrophils. We summarise the evidence to support their role in healthy pregnancy and labour and describe their potential contribution to microbial driven preterm birth.
Collapse
Affiliation(s)
- Belen Gimeno-Molina
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- March of Dimes European Prematurity Research Centre, Imperial College London, London W12 0HS, UK
| | - Ingrid Muller
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
| | - Pascale Kropf
- March of Dimes European Prematurity Research Centre, Imperial College London, London W12 0HS, UK
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0HS, UK
- March of Dimes European Prematurity Research Centre, Imperial College London, London W12 0HS, UK
- The Parasol Foundation Centre for Women’s Health and Cancer Research, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Correspondence:
| |
Collapse
|
10
|
Liu Z, Bian L, Yeoman CJ, Clifton GD, Ellington JE, Ellington-Lawrence RD, Borgogna JLC, Star A. Bacterial Vaginosis Monitoring with Carbon Nanotube Field-Effect Transistors. Anal Chem 2022; 94:3849-3857. [PMID: 35191682 DOI: 10.1021/acs.analchem.1c04755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to rapidly and reliably screen for bacterial vaginosis (BV) during pregnancy is of great significance for maternal health and pregnancy outcomes. In this proof-of-concept study, we demonstrated the potential of carbon nanotube field-effect transistors (NTFET) in the rapid diagnostics of BV with the sensing of BV-related factors such as pH and biogenic amines. The fabricated sensors showed good linearity to pH changes with a linear correlation coefficient of 0.99. The pH sensing performance was stable after more than one month of sensor storage. In addition, the sensor was able to classify BV-related biogenic amine-negative/positive samples with machine learning, utilizing different test strategies and algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), and principal component analysis (PCA). The biogenic amine sample status could be well classified using a soft-margin SVM model with a validation accuracy of 87.5%. The accuracy could be further improved using a gold gate electrode for measurement, with accuracy higher than 90% in both LDA and SVM models. We also explored the sensing mechanisms and found that the change in NTFET off current was crucial for classification. The fabricated sensors successfully detect BV-related factors, demonstrating the competitive advantage of NTFET for point-of-care diagnostics of BV.
Collapse
Affiliation(s)
- Zhengru Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Long Bian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carl J Yeoman
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - G Dennis Clifton
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | - Joanna E Ellington
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | | | - Joanna-Lynn C Borgogna
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|