1
|
Zhang Y, Guo Z, Lai R, Zou X, Ma L, Cai T, Huang J, Huang W, Zou B, Zhou J, Li J. Comprehensive Analysis Based on Genes Associated With Cuproptosis, Ferroptosis, and Pyroptosis for the Prediction of Diagnosis and Therapies in Coronary Artery Disease. Cardiovasc Ther 2025; 2025:9106621. [PMID: 40124544 PMCID: PMC11929595 DOI: 10.1155/cdr/9106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/06/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Coronary artery disease (CAD) is a complex condition influenced by genetic factors, lifestyle, and other risk factors that contribute to increased mortality. This study is aimed at evaluating the diagnostic potential of genes associated with cuproptosis, ferroptosis, and pyroptosis (CFP) using network modularization and machine learning methods. CAD-related datasets GSE42148, GSE20680, and GSE20681 were sourced from the GEO database, and genes related to CFP genes were gathered from MsigDB and FerrDb datasets and literature. To identify diagnostic genes linked to these pathways, weighted gene coexpression network analysis (WGCNA) was used to isolate CAD-related modules. The diagnostic accuracy of key genes in these modules was then assessed using LASSO, SVM, and random forest models. Immunity and drug sensitivity correlation analyses were subsequently performed to investigate possible underlying mechanisms. The function of a potential gene, STK17B, was analyzed through western blot and transwell assays. Two CAD-related modules with strong correlations were identified and validated. The SVM model outperformed LASSO and random forest models, demonstrating superior discriminative power (AUC = 0.997 in the blue module and AUC = 1.000 in the turquoise module), with nine key genes identified: CTDSP2, DHRS7, NLRP1, MARCKS, PELI1, RILPL2, JUNB, STK17B, and SLC40A1. Knockdown of STK17B inhibited cell migration and invasion in human umbilical vein endothelial cells. In summary, our findings suggest that CFP genes hold potential as diagnostic biomarkers and therapeutic targets, with STK17B playing a role in CAD progression.
Collapse
Affiliation(s)
- Yongyi Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhehan Guo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Renkui Lai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xu Zou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Liuling Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Tianjin Cai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jingyi Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wenxiang Huang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Bingcheng Zou
- Schoole of Life Science, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jinming Zhou
- Schoole of Life Science, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jinxin Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Zhu L, Zhang J, Fan W, Su C, Jin Z. Identification of iron metabolism-related genes in coronary heart disease and construction of a diagnostic model. Front Cardiovasc Med 2024; 11:1409605. [PMID: 39610972 PMCID: PMC11602506 DOI: 10.3389/fcvm.2024.1409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Background Coronary heart disease is a common cardiovascular disease, yferroptosiset its relationship with iron metabolism remains unclear. Methods Gene expression data from peripheral blood samples of patients with coronary heart disease and a healthy control group were utilized for a comprehensive analysis that included differential expression analysis, weighted gene co-expression network analysis, gene enrichment analysis, and the development of a logistic regression model to investigate the associations and differences between the groups. Additionally, the CIBERSORT algorithm was employed to examine the composition of immune cell types within the samples. Results Eight central genes were identified as being both differentially expressed and related to iron metabolism. These central genes are mainly involved in the cellular stress response. A logistic regression model based on the central genes achieved an AUC of 0.64-0.65 in the diagnosis of coronary heart disease. A higher proportion of M0 macrophages was found in patients with coronary heart disease, while a higher proportion of CD8T cells was observed in the normal control group. Conclusion The study identified important genes related to iron metabolism in the pathogenesis of coronary heart disease and constructed a robust diagnostic model. The results suggest that iron metabolism and immune cells may play a significant role in the development of coronary heart disease, providing a basis for further research.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Jaatinen K, Shah P, Mazhari R, Hayden Z, Wargowsky R, Jepson T, Toma I, Perkins J, McCaffrey TA. RNAseq of INOCA patients identifies innate, invariant, and acquired immune changes: potential autoimmune microvascular dysfunction. Front Cardiovasc Med 2024; 11:1385457. [PMID: 38978787 PMCID: PMC11228317 DOI: 10.3389/fcvm.2024.1385457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Background Ischemia with non-obstructive coronary arteries (INOCA) is a major clinical entity that involves potentially 20%-30% of patients with chest pain. INOCA is typically attributed either to coronary microvascular disease and/or vasospasm, but is likely distinct from classical coronary artery disease (CAD). Objectives To gain insights into the etiology of INOCA and CAD, RNA sequencing of whole blood from patients undergoing both stress testing and elective invasive coronary angiography (ICA) was conducted. Methods Stress testing and ICA of 177 patients identified 40 patients (23%) with INOCA compared to 39 controls (stress-, ICA-). ICA+ patients divided into 38 stress- and 60 stress+. RNAseq was performed by Illumina with ribosomal RNA depletion. Transcriptome changes were analyzed by DeSeq2 and curated by manual and automated methods. Results Differentially expressed genes for INOCA were associated with elevated levels of transcripts related to mucosal-associated invariant T (MAIT) cells, plasmacytoid dendritic cells (pcDC), and memory B cells, and were associated with autoimmune diseases such as rheumatoid arthritis. Decreased transcripts were associated with neutrophils, but neutrophil transcripts, per se, were not less abundant in INOCA. CAD transcripts were more related to T cell functions. Conclusions Elevated transcripts related to pcDC, MAIT, and memory B cells suggest an autoimmune component to INOCA. Reduced neutrophil transcripts are likely attributed to chronic activation leading to increased translation and degradation. Thus, INOCA could result from stimulation of B cell, pcDC, invariant T cell, and neutrophil activation that compromises cardiac microvascular function.
Collapse
Affiliation(s)
- Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Palak Shah
- INOVA Heart and Vascular Institute, Fairfax, VA, United States
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, Washington, DC, United States
| | - Zane Hayden
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- The St. Laurent Institute, Woburn, MA, United States
- True Bearing Diagnostics, Washington, DC, United States
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- Department of Clinical Research and Leadership, The George Washington University, Washington, DC, United States
| | - John Perkins
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, Washington, DC, United States
- True Bearing Diagnostics, Washington, DC, United States
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
4
|
Jung M, Bonavida B. Immune Evasion in Cancer Is Regulated by Tumor-Asociated Macrophages (TAMs): Targeting TAMs. Crit Rev Oncog 2024; 29:1-17. [PMID: 38989734 DOI: 10.1615/critrevoncog.2024053096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Recent advancements in cancer treatment have explored a variety of approaches to address the needs of patients. Recently, immunotherapy has evolved as an efficacious treatment for various cancers resistant to conventional therapies. Hence, significant milestones in immunotherapy were achieved clinically in a large subset of cancer patients. Unfortunately, some cancer types do not respond to treatment, and among the responsive cancers, some patients remain unresponsive to treatment. Consequently, there is a critical need to examine the mechanisms of immune resistance and devise strategies to target immune suppressor cells or factors, thereby allowing for tumor sensitivity to immune cytotoxic cells. M2 macrophages, also known as tumor-associated macrophages (TAMs), are of interest due to their role in suppressing the immune system and influencing antitumor immune responses through modulating T cell activity and immune checkpoint expression. TAMs are associated with signaling pathways that modulate the tumor microenvironment (TME), contributing to immune evasion. One approach targets TAMs, focusing on preventing the polarization of M1 macrophages into the protumoral M2 phenotype. Other strategies focus on direct or indirect targeting of M2 macrophages through understanding the interaction of TAMs with immune factors or signaling pathways. Clinically, biomarkers associated with TAMs' immune resistance in cancer patients have been identified, opening avenues for intervention using pharmacological agents or immunotherapeutic approaches. Ultimately, these multifaceted approaches are promising in overcoming immune resistance and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Megan Jung
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
5
|
Bai X, Zhang W, Yu T. Integrative bioinformatics analysis identifies APOB as a critical biomarker in coronary in-stent restenosis. Biomark Med 2023; 17:983-998. [PMID: 38223945 DOI: 10.2217/bmm-2023-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Aim: Coronary artery disease (CAD) is a major contributor to the worldwide prevalence of cardiovascular disease. In-stent restenosis (ISR) is a common complication which can lead to stent implantation failure, necessitating repeated intervention and presenting a significant obstacle for CAD management. Methods: To accurately assess and determine the hub genes associated with ISR, CAD databases from the Gene Expression Omnibus were utilized and weighted gene coexpression network analysis was employed to identify key genes in blood samples. Results: APOB was identified as a risk gene for ISR occurrence. Subsequent correlation analysis of APOB demonstrated a positive association with ISR. Clinical validation further confirmed the predictive value of APOB in ISR detection. Conclusion: We have identified APOB as a critical predictive biomarker for ISR in CAD patients.
Collapse
Affiliation(s)
- Xinghua Bai
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, 311100, PR China
| | - Weizong Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, 311100, PR China
| | - Tao Yu
- Department of Cardiovascular Medicine, The First People's Hospital of Linping District, Hangzhou, 311100, PR China
| |
Collapse
|
6
|
Rafiq M, Dandare A, Javed A, Liaquat A, Raja AA, Awan HM, Khan MJ, Naeem A. Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in Pathophysiology of Coronary Heart Disease. Genes (Basel) 2023; 14:550. [PMID: 36980823 PMCID: PMC10047999 DOI: 10.3390/genes14030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Coronary heart disease (CHD) is a global health concern, and its molecular origin is not fully elucidated. Dysregulation of ncRNAs has been linked to many metabolic and infectious diseases. This study aimed to explore the role of circRNAs in the pathogenesis of CHD and predicted a candidate circRNA that could be targeted for therapeutic approaches to the disease. circRNAs associated with CHD were identified and CHD gene expression profiles were obtained, and analyzed with GEO2R. In addition, differentially expressed miRNA target genes (miR-DEGs) were identified and subjected to functional enrichment analysis. Networks of circRNA/miRNA/mRNA and the miRNA/affected pathways were constructed. Furthermore, a miRNA/mRNA homology study was performed. We identified that hsa_circ_0126672 was strongly associated with the CHD pathology by competing for endogenous RNA (ceRNA) mechanisms. hsa_circ_0126672 characteristically sponges miR-145-5p, miR-186-5p, miR-548c-3p, miR-7-5p, miR-495-3p, miR-203a-3p, and miR-21. Up-regulation of has_circ_0126672 affected various CHD-related cellular functions, such as atherosclerosis, JAK/STAT, and Apelin signaling pathways. Our results also revealed a perfect and stable interaction for the hybrid of miR-145-5p with NOS1 and RPS6KB1. Finally, miR-145-5p had the highest degree of interaction with the validated small molecules. Henchashsa_circ_0126672 and target miRNAs, notably miR-145-5p, could be good candidates for the diagnosis and therapeutic approaches to CHD.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B 2346, Nigeria
| | - Arham Javed
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afrose Liaquat
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afraz Ahmad Raja
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Hassaan Mehboob Awan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Health Research Governance Department, Ministry of Public Health, Doha P.O. Box 42, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|