1
|
Xu C, Gao L, Li J, Shen L, Liang H, Luan K, Wu X. Prediction of RNA secondary structure based on stem region replacement using the RSRNA algorithm. Comput Methods Biomech Biomed Engin 2020; 24:101-114. [PMID: 32901523 DOI: 10.1080/10255842.2020.1813280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA functions, including the regulation of various cellular activities, seem to be closely related to its structure. However, accurately predicting RNA secondary structures can be difficult. Structural prediction can be achieved by selecting stem areas that are suitable and compatible from stem pools. Here, we propose a method for predicting the secondary structure of non-coding RNA based on stem region substitution, which we named RSRNA. This method is compatible with nested RNA secondary structures, while reducing any randomness. Our algorithm had higher performance and prediction accuracy than other algorithms, which deems it more effective for future RNA structure studies.
Collapse
Affiliation(s)
- Chengzhen Xu
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China.,College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Longjian Gao
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Longfeng Shen
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Kuan Luan
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xiaomin Wu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
2
|
Lee CH, Han SR, Lee SW. Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:79-100. [PMID: 30340790 DOI: 10.1016/bs.pmbts.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 1982, the Cech group discovered that an intron structure in an rRNA precursor of Tetrahymena thermophila is sufficient to complete splicing without assistance from proteins. This was the first moment that scientists recognized RNAs can have catalytic activities derived from their own unique three-dimensional structures and thus play more various roles in biological processes than thought before. Several additional catalytic RNAs, called ribozymes, were subsequently identified in nature followed by intense studies to reveal their mechanisms of action and to engineer them for use in fields such as molecular cell biology, therapeutics, imaging, etc. Naturally occurring RNA-targeting ribozymes can be broadly classified into two categories by their abilities: Self-cleavage and self-splicing. Since ribozymes use base-pairing to recognize cleavage sites, identification of the catalytic center of naturally occurring ribozymes enables to engineer from "self" to "trans" acting ones which has accelerated to design and use ribozyme as valuable tools in gene therapy fields. Especially, group I intron-based trans-splicing ribozyme has unique property to use as a gene therapeutic agent. It can destroy and simultaneously repair (and/or reprogram) target RNAs to yield the desired therapeutic RNAs, maintaining endogenous spatial and temporal gene regulation of target RNAs. There have been progressive improvements in trans-splicing ribozymes and successful applications of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions. In this chapter, current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects will be discussed.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | | | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea; Rznomics Inc., Gwangju, Republic of Korea.
| |
Collapse
|
3
|
Kumar P, Cabaj MK, Pazio A, Dominiak PM. Protonated nucleobases are not fully ionized in their chloride salt crystals and form metastable base pairs further stabilized by the surrounding anions. IUCRJ 2018; 5:449-469. [PMID: 30002846 PMCID: PMC6038959 DOI: 10.1107/s2052252518006346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
This paper presents experimental charge-density studies of cytosinium chloride, adeninium chloride hemihydrate and guaninium dichloride crystals based on ultra-high-resolution X-ray diffraction data and extensive theoretical calculations. The results confirm that the cohesive energies of the studied systems are dominated by contributions from intermolecular electrostatic interactions, as expected for ionic crystals. Electrostatic interaction energies (Ees) usually constitute 95% of the total interaction energy. The Ees energies in this study were several times larger in absolute value when compared, for example, with dimers of neutral nucleobases. However, they were not as large as some theoretical calculations have predicted. This was because the molecules appeared not to be fully ionized in the studied crystals. Apart from charge transfer from chlorine to the protonated nucleobases, small but visible charge redistribution within the nucleobase cations was observed. Some dimers of singly protonated bases in the studied crystals, namely a cytosinium-cytosinium trans sugar/sugar edge pair and an adeninium-adeninium trans Hoogsteen/Hoogsteen edge pair, exhibited attractive interactions (negative values of Ees) or unusually low repulsion despite identical molecular charges. The pairs are metastable as a result of strong hydrogen bonding between bases which overcompensates the overall cation-cation repulsion, the latter being weakened due to charge transfer and molecular charge-density polarization.
Collapse
Affiliation(s)
- Prashant Kumar
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Malgorzata Katarzyna Cabaj
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Aleksandra Pazio
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Center, Department of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
4
|
Lee CH, Han SR, Lee SW. Therapeutic applications of group I intron-based trans-splicing ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1466. [PMID: 29383855 DOI: 10.1002/wrna.1466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Since the breakthrough discovery of catalytic RNAs (ribozymes) in the early 1980s, valuable ribozyme-based gene therapies have been developed for incurable diseases ranging from genetic disorders to viral infections and cancers. Ribozymes can be engineered and used to downregulate or repair pathogenic genes via RNA cleavage mediated by trans-cleaving ribozymes or repair and reprograming mediated by trans-splicing ribozymes, respectively. Uniquely, trans-splicing ribozymes can edit target RNAs via simultaneous destruction and repair (and/or reprograming) to yield the desired therapeutic RNAs, thus selectively inducing therapeutic gene activity in cells expressing the target RNAs. In contrast to traditional gene therapy approaches, such as simple addition of therapeutic transgenes or inhibition of disease-causing genes, the selective repair and/or reprograming abilities of trans-splicing ribozymes in target RNA-expressing cells facilitates the maintenance of endogenous spatial and temporal gene regulation and reduction of disease-associated transcript expression. In molecular imaging technologies, trans-splicing ribozymes can be used to reprogram specific RNAs in living cells and organisms by the 3'-tagging of reporter RNAs. The past two decades have seen progressive improvements in trans-splicing ribozymes and the successful application of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions, such as genetic, infectious, and malignant disease. This review provides an overview of the current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
5
|
Fiskaa T, Birgisdottir AB. RNA reprogramming and repair based on trans-splicing group I ribozymes. N Biotechnol 2010; 27:194-203. [PMID: 20219714 DOI: 10.1016/j.nbt.2010.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While many traditional gene therapy strategies attempt to deliver new copies of wild-type genes back to cells harboring the defective genes, RNA-directed strategies offer a range of novel therapeutic applications. Revision or reprogramming of mRNA is a form of gene therapy that modifies mRNA without directly changing the transcriptional regulation or the genomic gene sequence. Group I ribozymes can be engineered to act in trans by recognizing a separate RNA molecule in a sequence-specific manner, and to covalently link a new RNA sequence to this separate RNA molecule. Group I ribozymes have been shown to repair defective transcripts that cause human genetic or malignant diseases, as well as to replace transcript sequences by foreign RNA resulting in new cellular functions. This review provides an overview of current strategies using trans-splicing group I ribozymes in RNA repair and reprogramming.
Collapse
Affiliation(s)
- Tonje Fiskaa
- RNA and Transcriptomics Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
6
|
Chase E, Golden BL. Crystallization and preliminary diffraction analysis of a group I ribozyme from bacteriophage Twort. Acta Crystallogr Sect F Struct Biol Cryst Commun 2004; 61:71-4. [PMID: 16508095 PMCID: PMC1952367 DOI: 10.1107/s1744309104028337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/03/2004] [Indexed: 11/10/2022]
Abstract
Group I introns are catalytic RNAs that are capable of performing a variety of phosphotransesterification reactions including self-splicing and RNA cleavage. The reactions are efficient, accurate and dependent only on the presence of guanosine-nucleotide substrate and sufficient magnesium ion to stabilize the structure of the RNA. To understand how the group I intron active-site facilitates catalysis, crystals of a 242-nucleotide ribozyme bound to a four-nucleotide product RNA have been produced that diffract to 3.6 A resolution. The space group of these crystals is I2(1)2(1)2(1) and the unit-cell parameters are a = 94.6, b = 141.0, c = 210.9 A. A single heavy-atom derivative has been synthesized by covalent modification of the product RNA with iodine.
Collapse
Affiliation(s)
- Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
- Correspondence e-mail:
| |
Collapse
|
7
|
Chen X, Mohr G, Lambowitz AM. The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns. RNA (NEW YORK, N.Y.) 2004; 10:634-644. [PMID: 15037773 PMCID: PMC1370554 DOI: 10.1261/rna.5212604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 12/18/2003] [Indexed: 05/24/2023]
Abstract
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by stabilizing the catalytically active RNA structure. To accomplish this, CYT-18 recognizes conserved structural features of group I intron RNAs using regions of the N-terminal nucleotide-binding fold, intermediate alpha-helical, and C-terminal RNA-binding domains that also function in binding tRNA(Tyr). Curiously, whereas the splicing of the N. crassa mitochondrial large subunit rRNA intron is completely dependent on CYT-18's C-terminal RNA-binding domain, all other group I introns tested thus far are spliced efficiently by a truncated protein lacking this domain. To investigate the function of the C-terminal domain, we used an Escherichia coli genetic assay to isolate mutants of the Saccharomyces cerevisiae mitochondrial large subunit rRNA and phage T4 td introns that can be spliced in vivo by the wild-type CYT-18 protein, but not by the C-terminally truncated protein. Mutations that result in dependence on CYT-18's C-terminal domain include those disrupting two long-range GNRA tetraloop/receptor interactions: L2-P8, which helps position the P1 helix containing the 5'-splice site, and L9-P5, which helps establish the correct relative orientation of the P4-P6 and P3-P9 domains of the group I intron catalytic core. Our results indicate that different structural mutations in group I intron RNAs can result in dependence on different regions of CYT-18 for RNA splicing.
Collapse
Affiliation(s)
- Xin Chen
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
8
|
Xie Z, Srividya N, Sosnick TR, Pan T, Scherer NF. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proc Natl Acad Sci U S A 2004; 101:534-9. [PMID: 14704266 PMCID: PMC327182 DOI: 10.1073/pnas.2636333100] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2003] [Indexed: 11/18/2022] Open
Abstract
The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-I(eq)-to-N, and focused on the I(eq)-to-N transition. The present study focuses on the U-to-I(eq) transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5' end and Cy3 at the 3' end show that modifications required for labeling do not interfere with folding and help to define the Mg(2+) concentration range for the U-to-I(eq) transition. Histogram analysis of the Mg(2+)-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg(2+) concentrations on the time scale of seconds. The trajectories at intermediate Mg(2+) concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of "nonsudden jump" FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many "local" conformational switches. A free energy contour is constructed to illustrate the complex folding surface.
Collapse
Affiliation(s)
- Zheng Xie
- Institute for Biophysical Dynamics and Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The specific structural features of stem-loop (hairpin) DNA constructs provide increased specificity of target recognition. Recently, several robust assays have been developed that exploit the potential of structurally constrained oligonucleotides to hybridize with their cognate targets. Here, I review new diagnostic approaches based on the formation of stem-loop DNA oligonucleotides: molecular beacon methodology, suppression PCR approaches and the use of hairpin probes in DNA microarrays. The advantages of these techniques over existing ones for sequence-specific DNA detection, amplification and manipulation are discussed.
Collapse
Affiliation(s)
- Natalia E Broude
- Center for Advanced Biotechnology and Dept of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
|
11
|
|
12
|
|
13
|
Maglott EJ, Glick GD. Probing structural elements in RNA using engineered disulfide cross-links. Nucleic Acids Res 1998; 26:1301-8. [PMID: 9469841 PMCID: PMC147396 DOI: 10.1093/nar/26.5.1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways.
Collapse
MESH Headings
- Base Sequence
- Cross-Linking Reagents
- Disulfides/chemistry
- Hot Temperature
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- RNA, Fungal/chemical synthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Transfer, Phe/chemical synthesis
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- E J Maglott
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
14
|
Corey MJ, Corey E. On the failure of de novo-designed peptides as biocatalysts. Proc Natl Acad Sci U S A 1996; 93:11428-34. [PMID: 8876152 PMCID: PMC38074 DOI: 10.1073/pnas.93.21.11428] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
While the elegance and efficiency of enzymatic catalysis have long tempted chemists and biochemists with reductionist leanings to try to mimic the functions of natural enzymes in much smaller peptides, such efforts have only rarely produced catalysts with biologically interesting properties. However, the advent of genetic engineering and hybridoma technology and the discovery of catalytic RNA have led to new and very promising alternative means of biocatalyst development. Synthetic chemists have also had some success in creating nonpeptide catalysts with certain enzyme-like characteristics, although their rates and specificities are generally much poorer than those exhibited by the best novel biocatalysts based on natural structures. A comparison of the various approaches from theoretical and practical viewpoints is presented. It is suggested that, given our current level of understanding, the most fruitful methods may incorporate both iterative selection strategies and rationally chosen small perturbations, superimposed on frameworks designed by nature.
Collapse
Affiliation(s)
- M J Corey
- Urology Department, University of Washington School of Medicine, Seattle 98195, USA
| | | |
Collapse
|
15
|
Abstract
Except for tRNA, the tertiary structure of RNA molecules are very little known. The many possibilities in the arrangement of different helices in space and the flexibility in the single-stranded loops that connect the helical regions make the modeling of the tertiary structure of RNA molecule a very complex task. Here, we introduce an approach to fold RNA tertiary structure based only on the information of the secondary structure and the stereochemistry of the molecule. This approach was used to construct an atomic structure of a pseudoknot (bases 500-545) in the E. coli 16S RNA. The resulting structure is a closely packed molecule that is consistent with the predicted secondary structure and stereochemically feasible. This new approach is very general and easily adaptable. Experimental data (e.g., NMR, fluorescence energy transfer, etc.), as they become available, can be incorporated directly into the approach to improve the accuracy of the modeled structure.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, NM 87545, USA.
| |
Collapse
|
16
|
Abstract
Basic principles underlying enzyme action are considered. Catalytic antibodies (abzymes), catalytic RNA (ribozymes), and non-biological counterparts of enzyme-catalyzed reactions are mentioned. Enzyme evolution is considered in terms of divergence, convergence, and lateral gene transfer.
Collapse
Affiliation(s)
- J Jeffery
- Department of Molecular and Cell Biology, University of Aberdeen, Marischal College, Scotland, UK
| |
Collapse
|