1
|
Yang F, Ding X, Lv G. Quantitative proteomic analysis based on TMT reveals different responses of Haloxylon ammodendron and Haloxylon persicum to long-term drought. BMC PLANT BIOLOGY 2025; 25:480. [PMID: 40234745 PMCID: PMC11998144 DOI: 10.1186/s12870-025-06513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The essence of the plant drought tolerance mechanism lies in determining protein expression patterns, identifying key drought-tolerant proteins, and elucidating their association with specific functions within metabolic pathways. So far, there is limited information on the long-term drought tolerance of Haloxylon ammodendron and Haloxylon persicum grown in natural environments, as analyzed through proteomics. Therefore, this study conducted proteomic research on H. ammodendron and H. persicum grown in natural environments to identify their long-term drought-tolerant protein expression patterns. Totals of 71 and 348 differentially expressed proteins (DEPs) were identified in H. ammodendron and H. persicum, respectively. Bioinformatics analysis of DEPs reveals that H. ammodendron primarily generates a large amount of energy by overexpressing proteins related to carbohydrate metabolism pathways (pyruvate kinase, purple acid phosphatases and chitinase), and simultaneously encodes proteins capable of degrading misfolded/damaged proteins (tam3-transposase, enhancer of mRNA-decapping protein 4, and proteinase inhibitor I3), thus adapting to long-term drought environments. For H. persicum, most DEPs (enolase and UDP-xylose/xylose synthase) involved in metabolic pathways are up-regulated, indicating that it mainly adapts to long-term drought environments through mechanisms related to positive regulation of protein expression. These results offer crucial insights into how desert plants adapt to arid environments over the long term to maintain internal balance. In addition, the identified key drought-tolerant proteins can serve as candidate proteins for molecular breeding in the genus Haloxylon, aiming to develop new germplasm for desert ecosystem restoration.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Xuelian Ding
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China.
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, 833300, China.
| |
Collapse
|
2
|
de Paz-Lugo P, Lupiáñez JA, Sicilia J, Meléndez-Hevia E. Control analysis of collagen synthesis by glycine, proline and lysine in bovine chondrocytes in vitro - Its relevance for medicine and nutrition. Biosystems 2023; 232:105004. [PMID: 37598999 DOI: 10.1016/j.biosystems.2023.105004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. Collagen synthesis is submitted to a large procollagen cycle where the greater part of the newly synthesized protein is degraded inside the cell producing a huge waste of material and energy. We have applied the Metabolic Control Analysis approach to study the control of collagen synthesis flux by means of the response coefficients of the flux with respect to glycine, proline and lysine. Our results show that the main cause of the procollagen cycle is a protein misfolding mainly due to glycine scarcity, as well as a moderate deficiency of proline and lysine for collagen synthesis. Thus, increasing these amino acids in the diet (especially glycine) may well be a strategy for helping cartilage regeneration by enhancing collagen synthesis and reducing its huge waste in the procollagen cycle; this possibly contributes to the treatment and prevention of osteoarthritis.
Collapse
Affiliation(s)
- Patricia de Paz-Lugo
- Instituto del Metabolismo Celular, Calle Manuel de Falla nº15, La Laguna, 38208, Tenerife, Canary Islands, Spain.
| | - José Antonio Lupiáñez
- Universidad de Granada, Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Avda. Fuentenueva nº 1, 18071, Granada, Spain.
| | - Joaquín Sicilia
- Universidad de La Laguna, Departamento de Matemáticas, Estadística e Investigación Operativa, Avda. Astrofísico Francisco Sánchez, S/n. La Laguna, 38206, Tenerife, Canary Islands, Spain.
| | - Enrique Meléndez-Hevia
- Instituto del Metabolismo Celular, Calle Manuel de Falla nº15, La Laguna, 38208, Tenerife, Canary Islands, Spain.
| |
Collapse
|
3
|
Li X, Ding M, Wang M, Yang S, Ma X, Hu J, Song F, Wang L, Liang W. Proteome profiling reveals changes in energy metabolism, transport and antioxidation during drought stress in Nostoc flagelliforme. BMC PLANT BIOLOGY 2022; 22:162. [PMID: 35365086 PMCID: PMC8973743 DOI: 10.1186/s12870-022-03542-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Drought is an important abiotic stress that constrains the growth of many species. Despite extensive study in model organisms, the underlying mechanisms of drought tolerance in Nostoc flagelliforme remain elusive. RESULTS We characterized the drought adaptation of N. flagelliforme by a combination of proteomics and qRT-PCR. A total of 351 differentially expressed proteins involved in drought stress adaptation were identified. It was found that the expression of several nutrient influx transporters was increased, including molybdate ABC transporter substrate binding protein (modA), sulfate ABC transporter substrate-binding protein (sbp) and nitrate ABC transporter (ntrB), while that of efflux transporters for toxic substances was also increased, including arsenic transporting ATPase (ArsA), potassium transporter (TrkA) and iron ABC transporter substrate-binding protein (VacB). Additionally, photosynthetic components were reduced while sugars built up during drought stress. Non-enzymatic antioxidants, orange carotenoid protein (OCP) homologs, cytochrome P450 (CYP450), proline (Pro) and ascorbic acid (AsA) were all altered during drought stress and may play important roles in scavenging reactive oxygen species (ROS). CONCLUSION In this study, N. flagelliforme may regulates its adaptation to drought stress through the changes of protein expression in photosynthesis, energy metabolism, transport, protein synthesis and degradation and antioxidation. HIGHLIGHTS • A total of 351 DEPs involved in adaptation to drought stress were identified. • Changes in the expression of six OCP homologs were found in response to drought stress. • Differential expression of transporters played an important role in drought stress adaptation. • Most PSII proteins were downregulated, while PSI proteins were unchanged in response to drought stress. • Sugar metabolism was upregulated in response to drought stress.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Miaomiao Ding
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Meng Wang
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Shujuan Yang
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Ma
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Jinhong Hu
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Fan Song
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Lingxia Wang
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China.
| | - Wenyu Liang
- College of Life Sciences, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
4
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
5
|
Jana S, Datta PP. In silico analysis of bacterial translation factors reveal distinct translation event specific pI values. BMC Genomics 2021; 22:220. [PMID: 33781198 PMCID: PMC8008671 DOI: 10.1186/s12864-021-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Protein synthesis is a cellular process that takes place through the successive translation events within the ribosome by the event-specific protein factors, namely, initiation, elongation, release, and recycling factors. In this regard, we asked the question about how similar are those translation factors to each other from a wide variety of bacteria? Hence, we did a thorough in silico study of the translation factors from 495 bacterial sp., and 4262 amino acid sequences by theoretically measuring their pI and MW values that are two determining factors for distinguishing individual proteins in 2D gel electrophoresis in experimental procedures. Then we analyzed the output from various angles. Results Our study revealed the fact that it’s not all same, or all random, but there are distinct orders and the pI values of translation factors are translation event specific. We found that the translation initiation factors are mainly basic, whereas, elongation and release factors that interact with the inter-subunit space of the intact 70S ribosome during translation are strictly acidic across bacterial sp. These acidic elongation factors and release factors contain higher frequencies of glutamic acids. However, among all the translation factors, the translation initiation factor 2 (IF2) and ribosome recycling factor (RRF) showed variable pI values that are linked to the order of phylogeny. Conclusions From the results of our study, we conclude that among all the bacterial translation factors, elongation and release factors are more conserved in terms of their pI values in comparison to initiation and recycling factors. Acidic properties of these factors are independent of habitat, nature, and phylogeny of the bacterial species. Furthermore, irrespective of the different shapes, sizes, and functions of the elongation and release factors, possession of the strictly acidic pI values of these translation factors all over the domain Bacteria indicates that the acidic nature of these factors is a necessary criterion, perhaps to interact into the partially enclosed rRNA rich inter-subunit space of the translating 70S ribosome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07472-x.
Collapse
Affiliation(s)
- Soma Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, PIN 741246, India
| | - Partha P Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, WB, PIN 741246, India.
| |
Collapse
|
6
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
7
|
Grad-cryo-EM: Tool to Isolate Translation Initiation Complexes from Rabbit Reticulocyte Lysate Suitable for Structural Studies. Methods Mol Biol 2020. [PMID: 32006323 DOI: 10.1007/978-1-0716-0278-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Since its development, single-particle cryogenic electron microscopy (cryo-EM) has played a central role in the study at medium resolution of both bacterial and eukaryotic ribosomal complexes. With the advent of the direct electron detectors and new processing software which allow obtaining structures at atomic resolution, formerly obtained only by X-ray crystallography, cryo-EM has become the method of choice for the structural analysis of the translation machinery. In most of the cases, the ribosomal complexes at different stages of the translation process are assembled in vitro from purified components, which limit the analysis to previously well-characterized complexes with known factors composition. The initiation phase of the protein synthesis is a very dynamic process during which several proteins interact with the translation apparatus leading to the formation of a chronological series of initiation complexes (ICs). Here we describe a method to isolate ICs assembled on natural in vitro transcribed mRNA directly from rabbit reticulocyte lysate (RRL) by sucrose density gradient centrifugation . The Grad-cryo-EM approach allows investigating structures and composition of intermediate ribosomal complexes prepared in near-native condition by cryo-EM and mass spectrometry analyses. This is a powerful approach, which could be used to study translation initiation of any mRNAs, including IRES containing ones, and which could be adapted to different cell extracts.
Collapse
|
8
|
Prabhakar A, Puglisi EV, Puglisi JD. Single-Molecule Fluorescence Applied to Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032714. [PMID: 29891562 DOI: 10.1101/cshperspect.a032714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305.,Program in Biophysics, Stanford University, Stanford, California 94305
| | - Elisabetta Viani Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
9
|
Shi XX, Chen H, Xie P. Dynamics of tRNA dissociation in early and later cycles of translation elongation by the ribosome. Biosystems 2018; 172:43-51. [PMID: 30184468 DOI: 10.1016/j.biosystems.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
Deacylated tRNA dissociation from E site and aminoacyl-tRNA binding to the A site of the ribosome play a critical role in repetitive cycles of protein synthesis. Available experimental data showed that in the small range of aminoacyl-tRNA concentrations, during the first few cycles of translation elongation (initiation phase of translation) the E-site tRNA can be dissociated either before or after the A-site tRNA binding, while during the later cycles of elongation (elongation phase) the E-site tRNA is mostly dissociated before the A-site tRNA binding. Here, based on our proposed model of translation elongation we study analytically the dynamics of the E-site tRNA dissociation and A-site tRNA binding, providing quantitative explanations of the available experimental data in both the initiation and elongation phases. In our model there exist two routes of state transitions within an elongation cycle in the initiation phase, with each route having stochastic E-site tRNA dissociation but with different dissociation rates. Thus, the E-site tRNA dissociation is governed by a stochastic competition between the tRNA dissociation and A-site tRNA association reactions, although in the small range of aminoacyl-tRNA concentrations used in the experiments it seems that such stochastic competition does not exist. Moreover, the detailed comparisons between the dynamics of tRNA dissociation in the initiation phase and that in the elongation phase are made.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| | - Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Ferrin MA, Subramaniam AR. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria. eLife 2017; 6. [PMID: 28498106 PMCID: PMC5446239 DOI: 10.7554/elife.23629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/10/2017] [Indexed: 02/01/2023] Open
Abstract
Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes.
Collapse
Affiliation(s)
- Michael A Ferrin
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
11
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
12
|
Sothiselvam S, Neuner S, Rigger L, Klepacki D, Micura R, Vázquez-Laslop N, Mankin AS. Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size. Cell Rep 2016; 16:1789-99. [PMID: 27498876 DOI: 10.1016/j.celrep.2016.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Macrolide antibiotic binding to the ribosome inhibits catalysis of peptide bond formation between specific donor and acceptor substrates. Why particular reactions are problematic for the macrolide-bound ribosome remains unclear. Using comprehensive mutational analysis and biochemical experiments with synthetic substrate analogs, we find that the positive charge of these specific residues and the length of their side chains underlie inefficient peptide bond formation in the macrolide-bound ribosome. Even in the absence of antibiotic, peptide bond formation between these particular donors and acceptors is rather inefficient, suggesting that macrolides magnify a problem present for intrinsically difficult substrates. Our findings emphasize the existence of functional interactions between the nascent protein and the catalytic site of the ribosomal peptidyl transferase center.
Collapse
Affiliation(s)
| | - Sandro Neuner
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Lukas Rigger
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, 6020 Innsbruck, Austria
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
13
|
Xie P. On the pathway of ribosomal translocation. Int J Biol Macromol 2016; 92:401-415. [PMID: 27431796 DOI: 10.1016/j.ijbiomac.2016.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
14
|
Shakiba B, Dayeri M, Mohammad-Rafiee F. Modeling of ribosome dynamics on a ds-mRNA under an external load. J Chem Phys 2016; 145:025101. [PMID: 27421425 DOI: 10.1063/1.4958321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein molecules in cells are synthesized by macromolecular machines called ribosomes. According to the recent experimental data, we reduce the complexity of the ribosome and propose a model to express its activity in six main states. Using our model, we study the translation rate in different biological relevant situations in the presence of external force and the translation through the RNA double stranded region in the absence or presence of the external force. In the present study, we give a quantitative theory for translation rate and show that the ribosome behaves more like a Brownian Ratchet motor. Our findings could shed some light on understanding behaviors of the ribosome in biological conditions.
Collapse
Affiliation(s)
- Bahareh Shakiba
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Dayeri
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
15
|
Xie P. Model of the pathway of -1 frameshifting: Long pausing. Biochem Biophys Rep 2016; 5:408-424. [PMID: 28955849 PMCID: PMC5600365 DOI: 10.1016/j.bbrep.2016.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
It has been characterized that the programmed ribosomal -1 frameshifting often occurs at the slippery sequence on the presence of a downstream mRNA pseudoknot. In some prokaryotic cases such as the dnaX gene of Escherichia coli, an additional stimulatory signal-an upstream, internal Shine-Dalgarno (SD) sequence-is also necessary to stimulate the efficient -1 frameshifting. However, the molecular and physical mechanism of the -1 frameshifting is poorly understood. Here, we propose a model of the pathway of the -1 translational frameshifting during ribosome translation of the dnaX -1 frameshift mRNA. With the model, the single-molecule fluorescence data (Chen et al. (2014) [29]) on the dynamics of the shunt either to long pausing or to normal translation, the tRNA transit and sampling dynamics in the long-paused rotated state, the EF-G sampling dynamics, the mean rotated-state lifetimes, etc., are explained quantitatively. Moreover, the model is also consistent with the experimental data (Yan et al. (2015) [30]) on translocation excursions and broad branching of frameshifting pathways. In addition, we present some predicted results, which can be easily tested by future optical trapping experiments.
Collapse
|
16
|
|
17
|
Beckelman BC, Zhou X, Keene CD, Ma T. Impaired Eukaryotic Elongation Factor 1A Expression in Alzheimer's Disease. NEURODEGENER DIS 2015; 16:39-43. [PMID: 26551858 DOI: 10.1159/000438925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/AIMS Recent studies have indicated a link between the impaired capacity of de novo protein synthesis and neurodegenerative diseases including Alzheimer's disease (AD). Moreover, it has been established that eukaryotic elongation factor 1A (eEF1A) plays a critical role in maintaining long-term synaptic plasticity, a cellular model for learning and memory. The aim of the present study is to determine whether brain eEF1A protein levels are dysregulated in brain tissue from AD patients compared with controls. METHODS Postmortem human brain samples collected from patients clinically diagnosed as AD, and from age-matched healthy controls, were utilized for this study. Both Western blot and immunohistochemistry approaches were utilized to investigate the potential alteration of eEF1A protein levels by using a specific antibody. RESULTS Our data demonstrate that eEF1A expression is reduced in AD patients in the hippocampus, but not in the cerebellum or midfrontal gyrus. Furthermore, immunohistochemical experiments reveal that neuronal eEF1A reduction in the AD hippocampus is localized to the CA1 and dentate gyrus, but not to the CA3. CONCLUSION Dysregulation of eEF1A and its associated signaling pathways might represent novel molecular mechanisms underlying AD pathogenesis. Further investigation is necessary to determine whether eEF1A is a viable therapeutic target for AD and other cognitive syndromes.
Collapse
Affiliation(s)
- Brenna C Beckelman
- Departments of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, N.C., USA
| | | | | | | |
Collapse
|
18
|
Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex. Int J Mol Sci 2015; 16:23723-44. [PMID: 26473825 PMCID: PMC4632723 DOI: 10.3390/ijms161023723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.
Collapse
|
19
|
Abstract
The bacterial ribosome is a complex macromolecular machine that deciphers the genetic code with remarkable fidelity. During the elongation phase of protein synthesis, the ribosome selects aminoacyl-tRNAs as dictated by the canonical base pairing between the anticodon of the tRNA and the codon of the messenger RNA. The ribosome's participation in tRNA selection is active rather than passive, using conformational changes of conserved bases of 16S rRNA to directly monitor the geometry of codon-anticodon base pairing. The tRNA selection process is divided into an initial selection step and a subsequent proofreading step, with the utilization of two sequential steps increasing the discriminating power of the ribosome far beyond that which could be achieved based on the thermodynamics of codon-anticodon base pairing stability. The accuracy of decoding is impaired by a number of antibiotics and can be either increased or decreased by various mutations in either subunit of the ribosome, in elongation factor Tu, and in tRNA. In this chapter we will review our current understanding of various forces that determine the accuracy of decoding by the bacterial ribosome.
Collapse
|
20
|
Xie P. Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022716. [PMID: 26382441 DOI: 10.1103/physreve.92.022716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 06/05/2023]
Abstract
The performance of ribosome translation can be characterized by two factors, the translation rate and fidelity. Here, we provide analytical studies of the effect of the near-cognate tRNAs on the two factors. It is shown that the increase of the concentration of the near-cognate tRNAs relative to that of the cognate tRNA has negative effects on the ribosome translation by reducing both the translation rate and the translation fidelity. The effect of the near-cognate ternary complexes on the translation rate results mainly from the initial selection phase, whereas the proofreading phase has a minor effect. By contrast, the effect of the near-cognate ternary complexes on the fidelity results almost equally from the two phases. By using two successive phases, the initial selection and the proofreading, the ribosome can achieve higher translation fidelity than the product of the fidelity when only the initial selection is included and when only the proofreading is included, especially at the large ratio of the concentration of the near-cognate tRNAs compared to that of the cognate tRNA. Moreover, we study the changes of the free energy landscape in the tRNA decoding step. It is found that the rate constants of the tRNA decoding step measured experimentally give the minimum energy changes for the ribosomal complex to attain the optimal performance with both the highest decoding rate and fidelity and/or with the maximum value of the decoding fitness function. This suggests that the ribosome has evolved to utilize the minimum free energy changes gained from the conformational changes of the ribosome, EF-Tu, and tRNA to achieve the optimal performance in the tRNA decoding.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Caserta E, Liu LC, Grundy FJ, Henkin TM. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch: RNA-DEPENDENT CODON SELECTION OUTSIDE THE RIBOSOME. J Biol Chem 2015; 290:23336-47. [PMID: 26229106 DOI: 10.1074/jbc.m115.673236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/28/2022] Open
Abstract
Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the "Specifier Sequence," in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNA(Gly) anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3' of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system.
Collapse
Affiliation(s)
- Enrico Caserta
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Liang-Chun Liu
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Frank J Grundy
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Tina M Henkin
- From the Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
22
|
Xie P. Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Biochem Biophys Rep 2015; 2:87-93. [PMID: 29124148 PMCID: PMC5668647 DOI: 10.1016/j.bbrep.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/03/2022] Open
Abstract
The ribosomal translocation involves both intersubunit rotations between the small 30S and large 50S subunits and the intrasubunit rotations of the 30S head relative to the 30S body. However, the detailed molecular mechanism on how the intersubunit and intrasubunit rotations are related to the translocation remains unclear. Here, based on available structural data a model is proposed for the ribosomal translocation, into which both the intersubunit and intrasubunit rotations are incorporated. With the model, we provide quantitative explanations of in vitro experimental data showing the biphasic character in the fluorescence change associated with the mRNA translocation and the character of a rapid increase that is followed by a slow single-exponential decrease in the fluorescence change associated with the 30S head rotation. The calculated translation rate is also consistent with the in vitro single-molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Decoding mechanisms by which silent codon changes influence protein biogenesis and function. Int J Biochem Cell Biol 2015; 64:58-74. [PMID: 25817479 DOI: 10.1016/j.biocel.2015.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 02/07/2023]
Abstract
SCOPE Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. PURPOSE This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. PHYSIOLOGICAL AND MEDICAL RELEVANCE Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies.
Collapse
|
24
|
An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 2015; 159:1200-1211. [PMID: 25416955 DOI: 10.1016/j.cell.2014.10.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
Ribosomes elongate at a nonuniform rate during translation. Theoretical models and experiments disagree on the in vivo determinants of elongation rate and the mechanism by which elongation rate affects protein levels. To resolve this conflict, we measured transcriptome-wide ribosome occupancy under multiple conditions and used it to formulate a whole-cell model of translation in E. coli. Our model predicts that elongation rates at most codons during nutrient-rich growth are not limited by the intracellular concentrations of aminoacyl-tRNAs. However, elongation pausing during starvation for single amino acids is highly sensitive to the kinetics of tRNA aminoacylation. We further show that translation abortion upon pausing accounts for the observed ribosome occupancy along mRNAs during starvation. Abortion reduces global protein synthesis, but it enhances the translation of a subset of mRNAs. These results suggest a regulatory role for aminoacylation and abortion during stress, and our study provides an experimentally constrained framework for modeling translation.
Collapse
|
25
|
Xie P. Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062703. [PMID: 25615125 DOI: 10.1103/physreve.90.062703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Indexed: 06/04/2023]
Abstract
We study theoretically the kinetics of mRNA translocation in the wild-type (WT) Escherichia coli ribosome, which is composed of a small 30S and large 50S subunit, and the ribosomes with mutations to some intersubunit bridges such as B1a, B4, B7a, and B8. The theoretical results reproduce well the available in vitro experimental data on the biphasic kinetics of the forward mRNA translocation catalyzed by elongation factor G (EF-G) hydrolyzing GTP, which can be best fit by the sum of two exponentials, and the monophasic kinetics of the spontaneous reverse mRNA translocation in the absence of the elongation factor, which can be best fit by a single-exponential function, in both the WT and mutant ribosomes. We show that both the mutation-induced increase in the maximal rate of the slow phase for the forward mRNA translocation and that in the rate of the spontaneous reverse mRNA translocation result from a reduction in the intrinsic energy barrier to resist the rotational movements between the two subunits, giving the same degree of increase in the two rates. The mutation-induced increase in the maximal rate of the fast phase for the forward mRNA translocation results mainly from the increase in the rate of the ribosomal unlocking, a conformational change in the ribosome that widens the mRNA channel for the mRNA translocation to take place, which could be partly due to the effect of the mutation on the intrasubunit 30S head rotation. Moreover, we study the translation rate of the WT and mutant ribosomes. It is shown that the translation rate versus the concentration of EF-G-GTP does not follow the Michaelis-Menten (MM) kinetics, which is in sharp contrast to the general property of other enzymes that the rate of the enzymatic reaction versus the concentration of a substrate follows the MM kinetics. The physical origin of this non-MM kinetics for the ribosome is revealed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
26
|
Xie P. Origin of multiple intersubunit rotations before EF-G-catalyzed ribosomal translocation through the mRNA with a downstream secondary structure. BMC BIOPHYSICS 2014. [DOI: 10.1186/s13628-014-0012-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Scott M, Klumpp S, Mateescu EM, Hwa T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol Syst Biol 2014; 10:747. [PMID: 25149558 PMCID: PMC4299513 DOI: 10.15252/msb.20145379] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite
large-scale changes in protein expression associated with sensing, adaptation, and processing
different environmental nutrients, simple growth laws connect the ribosome abundance and the growth
rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal
regulation that coordinate proteome-wide expression changes with cell growth in a variety of
nutrient conditions in the model organism Escherichia coli. We identify
supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif
maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different
environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth
rate control, irrespective of the details of the molecular implementation. The study highlights the
interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental
operating constraints, with implications for endogenous and synthetic design of microorganisms.
Collapse
Affiliation(s)
- Matthew Scott
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Eduard M Mateescu
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics and Center for Theoretical Biological Physics, University of California, San Diego La Jolla, CA, USA Institute for Theoretical Studies, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Abstract
EF4, a highly conserved protein present in bacteria, mitochondria and chloroplasts, can bind to both the posttranslocation and pretranslocation ribosomal complexes. When binding to the posttranslocation state, it catalyzes backward translocation to a pretranslocation state. When binding to the pretranslocation state, it catalyzes transition to another pretranslocation state that is similar and possibly identical to that resulting from the posttranslocation state bound by EF4, and competes with EF-G to regulate the elongation cycle. However, the molecular mechanism on how EF4 induces state transitions and mRNA translocation remains unclear. Here, we present both the model for state transitions induced by EF4 binding to the posttranslocation state and that by EF4 binding to the pretranslocation state, based on which we study the kinetics of EF4-induced state transitions and mRNA translocation, giving quantitative explanations of the available experimental data. Moreover, we present some predicted results on state transitions and mRNA translocation induced by EF4 binding to the pretranslocation state complexed with the mRNA containing a duplex region.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
29
|
Xie P. Dynamics of tRNA translocation, mRNA translocation and tRNA dissociation during ribosome translation through mRNA secondary structures. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:229-40. [DOI: 10.1007/s00249-014-0957-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
|
30
|
An explanation of biphasic characters of mRNA translocation in the ribosome. Biosystems 2014; 118:1-7. [DOI: 10.1016/j.biosystems.2014.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/17/2013] [Accepted: 01/31/2014] [Indexed: 11/23/2022]
|
31
|
Affiliation(s)
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley; Berkeley, CA 94720
| |
Collapse
|
32
|
Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. EMBO J 2014; 33:1073-85. [PMID: 24614227 DOI: 10.1002/embj.201387465] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.
Collapse
Affiliation(s)
- Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Bailey BL, Visscher K, Watkins J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys Biol 2014; 11:016009. [PMID: 24501223 DOI: 10.1088/1478-3975/11/1/016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
Collapse
Affiliation(s)
- Brenae L Bailey
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
34
|
Xie P. Dynamics of +1 ribosomal frameshifting. Math Biosci 2014; 249:44-51. [PMID: 24508018 DOI: 10.1016/j.mbs.2014.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
Abstract
It has been well characterized that the amino acid starvation can induce +1 frameshifting. However, how the +1 frameshifting occurs has not been fully understood. Here, taking Escherichia coli RF2 programmed frameshifting as an example we present systematical analysis of the +1 frameshifting that could occur during every state-transition step in elongation phase of protein synthesis, showing that the +1 frameshifting can occur only during the period after deacylated tRNA dissociation from the posttranslocation state and before the recognition of the next "hungry" codon. The +1 frameshifting efficiency is theoretically studied, with the simple analytical solutions showing that the high efficiency is almost solely due to the occurrence of ribosome pausing which in turn results from the insufficient RF2. The analytical solutions also provide a consistent explanation of a lot of independent experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
35
|
Xie P. A dynamical model of programmed −1 ribosomal frameshifting. J Theor Biol 2013; 336:119-31. [DOI: 10.1016/j.jtbi.2013.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022]
|
36
|
Abstract
Bacterial growth is crucially dependent on protein synthesis and thus on the cellular abundance of ribosomes and related proteins. Here, we show that the slow diffusion of the bulky tRNA complexes in the crowded cytoplasm imposes a physical limit on the speed of translation, which ultimately limits the rate of cell growth. To study the required allocation of ancillary translational proteins to alleviate the effect of molecular crowding, we develop a model for cell growth based on a coarse-grained partitioning of the proteome. We find that coregulation of ribosome- and tRNA-affiliated proteins is consistent with measured growth-rate dependencies and results in near-optimal allocation over a broad range of growth rates. The analysis further resolves a long-standing controversy in bacterial growth physiology concerning the growth-rate dependence of translation speed and serves as a caution against premature identification of phenomenological parameters with mechanistic processes.
Collapse
|
37
|
Dynamics of forward and backward translocation of mRNA in the ribosome. PLoS One 2013; 8:e70789. [PMID: 23951009 PMCID: PMC3739767 DOI: 10.1371/journal.pone.0070789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Translocation of the mRNA-tRNA complex in the ribosome, which is catalyzed by elongation factor EF-G, is one of critical steps in the elongation cycle of protein synthesis. Besides this conventional forward translocation, the backward translocation can also occur, which can be catalyzed by elongation factor LepA. However, the molecular mechanism of the translocation remains elusive. To understand the mechanism, here we study theoretically the dynamics of the forward translocation under various nucleotide states of EF-G and the backward translocation in the absence of and in the presence of LepA. We present a consistent explanation of spontaneous forward translocations in the absence of EF-G, the EF-G-catalyzed forward translocations in the presence of a non-hydrolysable GTP analogue and in the presence of GTP, and the spontaneous and LepA-catalyzed backward translocation. The theoretical results provide quantitative explanations of a lot of different, independent experimental data, and also provide testable predictions.
Collapse
|
38
|
Xie P. Translocation dynamics of tRNA-mRNA in the ribosome. Biophys Chem 2013; 180-181:22-8. [PMID: 23811427 DOI: 10.1016/j.bpc.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/30/2013] [Accepted: 06/01/2013] [Indexed: 11/16/2022]
Abstract
Translocation of tRNA-mRNA complex in the ribosome is an essential step in the elongation cycle of protein synthesis. However, some important issues concerning the molecular mechanism of the tRNA-mRNA translocation catalyzed by EF-G.GTP or by EF-G.GDPNP remain controversial. For example, can EF-G.GTP selectively bind to the hybrid pretranslocation state or bind to both the non-rotated pretranslocation and the hybrid pretranslocation states? Does the greater potency of EF-G in the presence of GTP rather than GDPNP in facilitating translocation derive from the effects on transition from the classical non-rotated to hybrid state (the first step of the translocation) or on transition from the hybrid to posttranslocation state (the second step)? Here, based on our proposed model, we study theoretically the dynamics of the tRNA-mRNA translocation through the ribosome catalyzed by EF-G.GTP and by EF-G.GDPNP. By comparing our theoretical results with the available experimental data, we show that EF-G.GTP can also bind to the classical non-rotated pretranslocation state and the greater potency of GTP hydrolysis in facilitating translocation of tRNA-mRNA complex derives from its effects on the second step of the translocation process.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
39
|
The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep 2013; 3:497-508. [PMID: 23416053 DOI: 10.1016/j.celrep.2013.01.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/18/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition.
Collapse
|
40
|
Xie P. Dynamics of tRNA occupancy and dissociation during translation by the ribosome. J Theor Biol 2013; 316:49-60. [DOI: 10.1016/j.jtbi.2012.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/23/2022]
|
41
|
Xie P. Model of ribosome translation and mRNA unwinding. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:347-54. [DOI: 10.1007/s00249-012-0879-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/19/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
42
|
Takahashi S, Tsuji K, Ueda T, Okahata Y. Traveling Time of a translating ribosome along messenger RNA monitored directly on a quartz crystal microbalance. J Am Chem Soc 2012; 134:6793-800. [PMID: 22452569 DOI: 10.1021/ja300993d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During translation, the biosynthesis of polypeptides is dynamically regulated. The translation rate along messenger RNA (mRNA), which is dependent on the codon, structure, and sequence, is not always constant. However, methods for measuring the duration required for polypeptide elongation on an mRNA of interest have not been developed. In this work, we used a quartz crystal microbalance (QCM) technique to monitor mRNA translation in an Escherichia coli cell-free translation system in real time. This method permitted us to evaluate the translation of proteins of interest fused upstream of a streptavidin-binding peptide (SBP) fusion protein. The translation of mRNA encoding the SBP fusion protein alone was observed as a mass increase on a streptavidin-modified QCM plate. Addition of the protein of interest resulted in a delay in the mass change corresponding to the traveling time of the ribosome along the coding region of the protein of interest. With this technique, the lengths of coding sequences, codon usages, influences of unique sequences, and various protein-coding sequences were evaluated. The results showed that the traveling time of the translating ribosome depends on the length of the coding region translated but is also affected by the sequence itself. Differences in the time lags for various proteins imply that mRNA coding sequences may regulate gene expression.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
43
|
Infantile Progressive Hepatoencephalomyopathy with Combined OXPHOS Deficiency due to Mutations in the Mitochondrial Translation Elongation Factor Gene GFM1. JIMD Rep 2011; 5:113-22. [PMID: 23430926 DOI: 10.1007/8904_2011_107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases caused by defects in the oxidative phosphorylation (OXPHOS) system. Given the complexity and intricacy of the OXPHOS system, it is not surprising that the underlying molecular defect remains unidentified in many patients with a mitochondrial disorder. Here, we report the clinical features and diagnostic workup leading to the elucidation of the genetic basis for a combined complex I and IV OXPHOS deficiency secondary to a mitochondrial translational defect in an infant who presented with rapidly progressive liver failure, encephalomyopathy, and severe refractory lactic acidemia. Sequencing of the GFM1 gene revealed two inherited novel, heterozygous mutations: a.539delG (p.Gly180AlafsX11) in exon 4 which resulted in a frameshift mutation, and a second c.688G > A (p.Gly230Ser) mutation in exon 5. This missense mutation is likely to be pathogenic since it affects an amino acid residue that is highly conserved across species and is absent from the dbSNP and 1,000 genomes databases. Review of literature and comparison were made with previously reported cases of this recently identified mitochondrial disorder encoded by a nuclear gene. Although limited in number, nuclear gene defects causing mitochondrial translation abnormalities represent a new, rapidly expanding field of mitochondrial medicine and should potentially be considered in the diagnostic investigation of infants with progressive hepatoencephalomyopathy and combined OXPHOS disorders.
Collapse
|
44
|
Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc Natl Acad Sci U S A 2011; 108:16980-5. [PMID: 21969541 DOI: 10.1073/pnas.1106999108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, deacylated transfer RNAs leave the ribosome via an exit (E) site after mRNA translocation. How the ribosome regulates tRNA dissociation and whether functional linkages between the aminoacyl (A) and E sites modulate the dynamics of protein synthesis have long been debated. Using single molecule fluorescence resonance energy transfer experiments, we find that, during early cycles of protein elongation, tRNAs are often held in the E site until being allosterically released when the next aminoacyl tRNA binds to the A site. This process is regulated by the length and sequence of the nascent peptide and by the conformational state, detected by tRNA proximity, prior to translocation. In later cycles, E-site tRNA dissociates spontaneously. Our results suggest that the distribution of pretranslocation tRNA states and posttranslocation pathways are correlated within each elongation cycle via communication between distant subdomains in the ribosome, but that this correlation between elongation cycle intermediates does not persist into succeeding cycles.
Collapse
|
45
|
Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol Cell 2011; 42:367-77. [PMID: 21549313 DOI: 10.1016/j.molcel.2011.03.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/01/2010] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
Abstract
We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G⋅GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA⋅EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.
Collapse
|
46
|
Huang Y, Sprinzl M. Peptide Bond Formation on the Ribosome: The Role of the 2′-OH Group on the Terminal Adenosine of Peptidyl-tRNA and of the Length of Nascent Peptide Chain. Angew Chem Int Ed Engl 2011; 50:7287-9. [DOI: 10.1002/anie.201005245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 09/27/2010] [Indexed: 11/09/2022]
|
47
|
Huang Y, Sprinzl M. Bildung der Peptidbindung im Ribosom: die Rolle der 2′-OH-Gruppe des terminalen Adenosins der Peptidyl-tRNA und der Länge der entstehenden Peptidkette. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Smits P, Antonicka H, van Hasselt PM, Weraarpachai W, Haller W, Schreurs M, Venselaar H, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet 2010; 19:275-9. [PMID: 21119709 DOI: 10.1038/ejhg.2010.208] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed.
Collapse
Affiliation(s)
- Paulien Smits
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Munro JB, Wasserman MR, Altman RB, Wang L, Blanchard SC. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat Struct Mol Biol 2010; 17:1470-7. [PMID: 21057527 PMCID: PMC2997181 DOI: 10.1038/nsmb.1925] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 09/09/2010] [Indexed: 11/09/2022]
Abstract
In bacteria, the translocation of tRNA and mRNA with respect to the ribosome is catalyzed by the conserved GTPase elongation factor-G (EF-G). To probe the rate-determining features in this process, we imaged EF-G-catalyzed translocation from two unique structural perspectives using single-molecule fluorescence resonance energy transfer. The data reveal that the rate at which the ribosome spontaneously achieves a transient, 'unlocked' state is closely correlated with the rate at which the tRNA-like domain IV-V element of EF-G engages the A site. After these structural transitions, translocation occurs comparatively fast, suggesting that conformational processes intrinsic to the ribosome determine the rate of translocation. Experiments conducted in the presence of non-hydrolyzable GTP analogs and specific antibiotics further reveal that allosterically linked conformational events in EF-G and the ribosome mediate rapid, directional substrate movement and EF-G release.
Collapse
Affiliation(s)
- James B Munro
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
50
|
Blanchard SC, Cooperman BS, Wilson DN. Probing translation with small-molecule inhibitors. ACTA ACUST UNITED AC 2010; 17:633-45. [PMID: 20609413 DOI: 10.1016/j.chembiol.2010.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/14/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
The translational apparatus of the bacterial cell remains one of the principal targets of antibiotics for the clinical treatment of infection worldwide. Since the introduction of specific translation inhibitors into clinical practice in the late 1940s, intense efforts have been made to understand their precise mechanisms of action. Such research has often revealed significant and sometimes unexpected insights into many fundamental aspects of the translation mechanism. Central to progress in this area, high-resolution crystal structures of the bacterial ribosome identifying the sites of antibiotic binding are now available, which, together with recent developments in single-molecule and fast-kinetic approaches, provide an integrated view of the dynamic translation process. Assays employing these approaches and focusing on specific steps of the overall translation process are amenable for drug screening. Such assays, coupled with structural studies, have the potential not only to accelerate the discovery of novel and effective antimicrobial agents, but also to refine our understanding of the mechanisms of translation. Antibiotics often stabilize specific functional states of the ribosome and therefore allow distinct translation steps to be dissected in molecular detail.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|