1
|
Duncalf L, Wang X, Aljabri AA, Campbell AE, Alharbi RQ, Donaldson I, Hayes A, Peti W, Page R, Bennett D. PNUTS:PP1 recruitment to Tox4 regulates chromosomal dispersal in Drosophila germline development. Cell Rep 2025; 44:115693. [PMID: 40347473 DOI: 10.1016/j.celrep.2025.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/16/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Ser/Thr protein phosphatase 1 (PP1) forms a large nuclear holoenzyme (with PNUTS, WDR82, and Tox4) whose emerging role is to regulate transcription. However, the role of Tox4, and its interplay with the other phosphatase subunits in this complex, is poorly understood. Here, we combine biochemical, structural, cellular, and in vivo experiments to show that, while tox4 is dispensable for viability, it is essential for fertility, having both PNUTS-dependent and -independent roles in Drosophila germline development. We also show that Tox4 requires zinc for PNUTS TFIIS N-terminal domain (TND) binding, and that it binds the TND on a surface distinct from that used by established TND-interacting transcriptional regulators. We also show that selective disruption of the PNUTS-Tox4 and the PNUTS-PP1 interaction is critical for normal gene expression and chromosomal dispersal during oogenesis. Together, these data demonstrate how interactions within the PNUTS-Tox4-PP1 phosphatase combine to tune transcriptional outputs driving developmental transitions.
Collapse
Affiliation(s)
- Louise Duncalf
- Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Xinru Wang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Abdulrahman A Aljabri
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT Manchester, UK; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Amy E Campbell
- Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Rawan Q Alharbi
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT Manchester, UK
| | - Ian Donaldson
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT Manchester, UK
| | - Andrew Hayes
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT Manchester, UK
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| | - Daimark Bennett
- Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK; Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, M13 9PT Manchester, UK.
| |
Collapse
|
2
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
3
|
Gu J, Wang W, Miao S, Chen F, Wu F, Hu W, Iqbal K, Gong CX, Liu F. Protein Phosphatase 1 dephosphorylates TDP-43 and suppresses its function in tau exon 10 inclusion. FEBS Lett 2018; 592:402-410. [PMID: 29334120 DOI: 10.1002/1873-3468.12976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
Transactive response DNA-binding protein of 43 kDa (TDP-43) regulates RNA processing, including alternative splicing of tau exon 10. Pathological TDP-43 is hyperphosphorylated. However, how do the protein phosphatase(s) (PP) regulate TDP-43 phosphorylation is unclear. Here, we found that both PP1 and PP2A were coimmunoprecipitated with TDP-43. Treatment with calyculin A, but not with okadaic acid, increased TDP-43 phosphorylation at Ser379, Ser403/404, and Ser409/410 in cultured cells. PP1α, PP1β, and PP1γ interacted with TDP-43. Overexpression of PP1α and PP1γ, but not PP1β, suppressed TDP-43 phosphorylation at Ser403/404 and Ser409/410 and TDP-43-induced tau exon 10 inclusion. These findings suggest that PP1α and PP1γ regulate TDP-43 phosphorylation and its function in tau exon 10 inclusion mainly through its phosphorylation at Ser403/404 and Ser409/410.
Collapse
Affiliation(s)
- Jianlan Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Jiangsu, China
| | - Weihua Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Shichen Miao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Feng Wu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wen Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
4
|
Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold. Protein J 2016; 35:340-345. [DOI: 10.1007/s10930-016-9677-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016; 7:12594. [PMID: 27558292 PMCID: PMC5007330 DOI: 10.1038/ncomms12594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Memory formation is a complex cognitive function regulated by coordinated synaptic and nuclear processes in neurons. In mammals, it is controlled by multiple molecular activators and suppressors, including the key signalling regulator, protein phosphatase 1 (PP1). Here, we show that memory control by PP1 involves the miR-183/96/182 cluster and its selective regulation during memory formation. Inhibiting nuclear PP1 in the mouse brain, or training on an object recognition task similarly increases miR-183/96/182 expression in the hippocampus. Mimicking this increase by miR-183/96/182 overexpression enhances object memory, while knocking-down endogenous miR-183/96/182 impairs it. This effect involves the modulation of several plasticity-related genes, with HDAC9 identified as an important functional target. Further, PP1 controls miR-183/96/182 in a transcription-independent manner through the processing of their precursors. These findings provide novel evidence for a role of miRNAs in memory formation and suggest the implication of PP1 in miRNAs processing in the adult brain.
Collapse
Affiliation(s)
- Bisrat T Woldemichael
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Ali Jawaid
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Eloïse A Kremer
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Niharika Gaur
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| | - Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4048, Switzerland
| | - Antonin Marchais
- Institute of Agricultural Sciences, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, University of Zurich/Swiss Federal Institute of Technology, Brain Research Institute, Neuroscience Center Zürich, Zurich CH-8057, Switzerland
| |
Collapse
|
6
|
Cougot D, Allemand E, Riviere L, Benhenda S, Duroure K, Levillayer F, Muchardt C, Buendia MA, Neuveut C. Inhibition of PP1 Phosphatase Activity by HBx: A Mechanism for the Activation of Hepatitis B Virus Transcription. Sci Signal 2012; 5:ra1. [DOI: 10.1126/scisignal.2001906] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Fréville A, Landrieu I, García-Gimeno MA, Vicogne J, Montbarbon M, Bertin B, Verger A, Kalamou H, Sanz P, Werkmeister E, Pierrot C, Khalife J. Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival. J Biol Chem 2011; 287:1306-21. [PMID: 22128182 DOI: 10.1074/jbc.m111.276865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Growing evidence indicates that the protein regulators governing protein phosphatase 1 (PP1) activity have crucial functions because their deletion drastically affects cell growth and division. PP1 has been found to be essential in Plasmodium falciparum, but little is known about its regulators. In this study, we have identified a homolog of Inhibitor-3 of PP1, named PfI3. NMR analysis shows that PfI3 belongs to the disordered protein family. High affinity interaction of PfI3 and PfPP1 is demonstrated in vitro using several methods, with an apparent dissociation constant K(D) of 100 nm. We further show that the conserved (41)KVVRW(45) motif is crucial for this interaction as the replacement of the Trp(45) by an Ala(45) severely decreases the binding to PfPP1. Surprisingly, PfI3 was unable to rescue a yeast strain deficient in I3 (Ypi1). This lack of functional orthology was supported as functional assays in vitro have revealed that PfI3, unlike yeast I3 and human I3, increases PfPP1 activity. Reverse genetic approaches suggest an essential role of PfI3 in the growth and/or survival of blood stage parasites because attempts to obtain knock-out parasites were unsuccessful, although the locus of PfI3 is accessible. The main localization of a GFP-tagged PfI3 in the nucleus of all blood stage parasites is compatible with a regulatory role of PfI3 on the activity of nuclear PfPP1.
Collapse
Affiliation(s)
- Aline Fréville
- Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu J, Feng Q, Ruan Y, Komers R, Kiviat N, Bomsztyk K. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays. BMC Mol Biol 2011; 12:49. [PMID: 22098709 PMCID: PMC3247195 DOI: 10.1186/1471-2199-12-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP) and methylated DNA (MeDIP) represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. RESULTS To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. CONCLUSION The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation to pursue mechanistic, functional and diagnostic information at genes of interest in health and disease.
Collapse
Affiliation(s)
- Jingjing Yu
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lee JH, You J, Dobrota E, Skalnik DG. Identification and characterization of a novel human PP1 phosphatase complex. J Biol Chem 2010; 285:24466-76. [PMID: 20516061 DOI: 10.1074/jbc.m110.109801] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mammalian Wdr82 is a regulatory component of the Setd1a and Setd1b histone H3-lysine 4 methyltransferase complexes and is implicated in the tethering of Setd1 complexes to transcriptional start sites of active genes. In the studies reported here, immunoprecipitation and mass spectrometry analyses reveal that Wdr82 additionally associates with multiple protein complexes, including an RNA polymerase II complex, four distinct histone H3-Lys(4) methyltransferase complexes, protein phosphatase 1 (PP1)-associated proteins, a chaperonin-containing Tcp1 complex, and other uncharacterized proteins. Further characterization of the PP1-associated proteins identified a stable multimeric complex composed of regulatory subunits PNUTS, Tox4, and Wdr82 and a PP1 catalytic subunit (denoted as the PTW/PP1 phosphatase complex). The PTW/PP1 complex exhibits in vitro phosphatase activity in a PP1-dependent manner. Analysis of protein-protein interactions reveals that PNUTS mediates phosphatase complex formation by providing a binding platform to each component. The PNUTS and Tox4 subunits are predominantly associated with the PTW/PP1 phosphatase complex in HEK293 cells, and the integrity of this complex remains intact throughout cell cycle progression. Inducible expression of a PP1 interaction-defective form of PNUTS (W401A) or small interfering RNA-mediated depletion of PNUTS in HEK293 cells causes cell cycle arrest at mitotic exit and apoptotic cell death. PNUTS (W401A) shows normal association with chromosomes but causes defects in the process of chromosome decondensation at late telophase. These data reveal that mammalian Wdr82 functions in a variety of cellular processes and reveal a potential role of the PTW/PP1 phosphatase complex in the regulation of chromatin structure during the transition from mitosis into interphase.
Collapse
Affiliation(s)
- Jeong-Heon Lee
- Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics and Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
10
|
CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene 2010; 29:4341-51. [PMID: 20498639 DOI: 10.1038/onc.2010.179] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RET/papillary thyroid carcinoma 1 (PTC1) oncogene is frequently activated in human PTCs. It is characterized by the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of CCDC6. The aim of our work is to characterize the function of the CCDC6 protein to better understand the function of its truncation, that results in the loss of the expression of one allele, in the process of thyroid carcinogenesis. Here, we report that CCDC6 interacts with CREB1 and represses its transcriptional activity by recruiting histone deacetylase 1 and protein phosphatase 1 proteins at the CRE site of the CREB1 target genes. Finally, we show an increased CREB1 phosphorylation and activity in PTCs carrying the RET/PTC1 oncogene. Consistently, an increased expression of two known CREB1 target genes, AREG and cyclin A, was observed in this subgroup of thyroid papillary carcinomas. Therefore, the repression of CREB1 activity by CCDC6 has a critical function in the development of human thyroid papillary carcinomas carrying RET/PTC1 activation.
Collapse
|
11
|
Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, Dovat S. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 2009; 284:13869-13880. [PMID: 19282287 DOI: 10.1074/jbc.m900209200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.
Collapse
Affiliation(s)
- Marcela Popescu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Zafer Gurel
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Tapani Ronni
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Chunhua Song
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Ka Ying Hung
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Kimberly J Payne
- Center for Health Disparities and Molecular Medicine and Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Sinisa Dovat
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108.
| |
Collapse
|
12
|
Moorhead GBG, Trinkle-Mulcahy L, Ulke-Lemée A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 2007; 8:234-44. [PMID: 17318227 DOI: 10.1038/nrm2126] [Citation(s) in RCA: 265] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phosphorylation state of any protein represents a balance of the actions of specific protein kinases and protein phosphatases. Many protein phosphatases are highly enriched in, or exclusive to, the nuclear compartment, where they dephosphorylate key substrates to regulate various nuclear processes. In this review we will discuss recent findings that define the role of nuclear protein phosphatases in controlling transforming growth factor-beta (TGFbeta) and bone-morphogenetic protein (BMP) signalling, the DNA-damage response, RNA processing, cell-cycle progression and gene transcription.
Collapse
Affiliation(s)
- Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary Alberta, Canada T2N 1N4.
| | | | | |
Collapse
|