1
|
Montemiglio LC, Gugole E, Freda I, Exertier C, D’Auria L, Chen CG, Nardi AN, Cerutti G, Parisi G, D’Abramo M, Savino C, Vallone B. Point Mutations at a Key Site Alter the Cytochrome P450 OleP Structural Dynamics. Biomolecules 2021; 12:biom12010055. [PMID: 35053203 PMCID: PMC8774231 DOI: 10.3390/biom12010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume. The crystal structures of the OleP mutants in the closed state bound to the aglycone 6DEB showed that G92W and S240Y occupied the cavity, providing additional contact points with the substrate. Conversely, mutation E89Y induces a flipped-out conformation of this amino acid side chain, that points towards the bulk, increasing the empty volume. Equilibrium titrations and molecular dynamic simulations indicate that the presence of a bulky residue within the cavity impacts the binding properties of the enzyme, perturbing the conformational space explored by the complexes. Our data highlight the relevance of this region in OleP substrate binding and suggest that it represents a key substrate-protein contact site to consider in the perspective of redirecting its activity towards alternative compounds.
Collapse
Affiliation(s)
- Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
| | - Elena Gugole
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
| | - Lucia D’Auria
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Cheng Giuseppe Chen
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Alessandro Nicola Nardi
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Gabriele Cerutti
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
| | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, IIT, 00185 Rome, Italy;
| | - Marco D’Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (C.G.C.); (A.N.N.); (M.D.)
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (L.C.M.); (C.E.)
- Correspondence: (C.S.); (B.V.); Tel.: +39-06-49910548 (C.S. & B.V.)
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy; (E.G.); (I.F.); (L.D.); (G.C.)
- Correspondence: (C.S.); (B.V.); Tel.: +39-06-49910548 (C.S. & B.V.)
| |
Collapse
|
2
|
Parisi G, Freda I, Exertier C, Cecchetti C, Gugole E, Cerutti G, D’Auria L, Macone A, Vallone B, Savino C, Montemiglio LC. Dissecting the Cytochrome P450 OleP Substrate Specificity: Evidence for a Preferential Substrate. Biomolecules 2020; 10:biom10101411. [PMID: 33036250 PMCID: PMC7600006 DOI: 10.3390/biom10101411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
The cytochrome P450 OleP catalyzes the epoxidation of aliphatic carbons on both the aglycone 8.8a-deoxyoleandolide (DEO) and the monoglycosylated L-olivosyl-8.8a-deoxyoleandolide (L-O-DEO) intermediates of oleandomycin biosynthesis. We investigated the substrate versatility of the enzyme. X-ray and equilibrium binding data show that the aglycone DEO loosely fits the OleP active site, triggering the closure that prepares it for catalysis only on a minor population of enzyme. The open-to-closed state transition allows solvent molecules to accumulate in a cavity that forms upon closure, mediating protein–substrate interactions. In silico docking of the monoglycosylated L-O-DEO in the closed OleP–DEO structure shows that the L-olivosyl moiety can be hosted in the same cavity, replacing solvent molecules and directly contacting structural elements involved in the transition. X-ray structures of aglycone-bound OleP in the presence of L-rhamnose confirm the cavity as a potential site for sugar binding. All considered, we propose L-O-DEO as the optimal substrate of OleP, the L-olivosyl moiety possibly representing the molecular wedge that triggers a more efficient structural response upon substrate binding, favoring and stabilizing the enzyme closure before catalysis. OleP substrate versatility is supported by structural solvent molecules that compensate for the absence of a glycosyl unit when the aglycone is bound.
Collapse
Affiliation(s)
- Giacomo Parisi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Center for Life Nano Science @ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Rome, Italy
| | - Ida Freda
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Cécile Exertier
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Cristina Cecchetti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Department of Life Sciences Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Elena Gugole
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
| | - Gabriele Cerutti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Current affiliation: Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Lucia D’Auria
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (L.D.); (A.M.)
| | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (L.D.); (A.M.)
| | - Beatrice Vallone
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, P. le Aldo Moro, 5, 00185 Rome, Italy; (G.P.); (I.F.); (C.E.); (C.C.); (E.G.); (G.C.); (B.V.)
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (C.S.); (L.C.M.)
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza, University of Rome, National Research Council, P.le Aldo Moro, 5, 00185 Rome, Italy
- Correspondence: (C.S.); (L.C.M.)
| |
Collapse
|
4
|
Druzhinina IS, Shelest E, Kubicek CP. Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 2012; 337:1-9. [PMID: 22924408 PMCID: PMC3533174 DOI: 10.1111/j.1574-6968.2012.02665.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 01/05/2023] Open
Abstract
Mycotrophic species of Trichoderma are among the most common fungi isolated from free soil, dead wood and as parasites on sporocarps of other fungi (mycoparasites). In addition, they undergo various other biotrophic associations ranging from rhizosphere colonization and endophytism up to facultative pathogenesis on such animals as roundworms and humans. Together with occurrence on a variety of less common substrata (marine invertebrates, artificial materials, indoor habitats), these lifestyles illustrate a wealthy opportunistic potential of the fungus. One tropical species, Trichoderma reesei, has become a prominent producer of cellulases and hemicellulases, whereas several other species are applied in agriculture for the biological control of phytopathogenic fungi. The sequencing of the complete genomes of the three species (T. reesei, T. virens, and T. atroviride) has led to a deepened understanding of Trichoderma lifestyle and its molecular physiology. In this review, we present the in silico predicted secretome of Trichoderma, and – in addition to the unique features of carbohydrate active enzymes – demonstrate the importance of such protein families as proteases, oxidative enzymes, and small cysteine-rich proteins, all of that received little attention in Trichoderma genetics so far. We also discuss the link between Trichoderma secretome and biology of the fungus.
Collapse
Affiliation(s)
- Irina S Druzhinina
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | |
Collapse
|
7
|
Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM. Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 2008; 392:1059-73. [PMID: 18622752 DOI: 10.1007/s00216-008-2248-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät für Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strabetae 6, 44227, Dortmund, Germany
| | | | | | | | | |
Collapse
|