1
|
Qu K, Shi M, Chen L, Liu Y, Yao X, Li X, Tan B, Xie S. Residual levels of dietary deltamethrin interfere with growth and intestinal health in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117376. [PMID: 39612679 DOI: 10.1016/j.ecoenv.2024.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
To date, few study explored the damage of chronic dietary exposure to the lipophilic pesticide deltamethrin (DM) in aquatic animals, and it remains unclear whether its toxicity and residue levels would be affected by dietary lipid levels. Therefore, the present study aimed to elucidate the interactions between dietary lipid levels and DM levels in the Pacific white shrimp, focusing on growth performance, antioxidant capacity, and intestinal microbiota. DM has excellent insecticidal activity and has been used worldwide. Previous research has shown that environmental DM poses toxicity risks to aquatic animals. Six different diets were formulated to feed shrimp for 6 weeks with two lipid levels (6.96 %, 10.88 %) and three DM levels (0.2 mg·kg-1, 1 mg·kg-1, 5 mg·kg-1), namely LF0.2, LF1, LF5, HF0.2, HF1, HF5, respectively. Each diet was assigned to three net cages with a total of 18 cages (40 shrimp per tank, average weight (0.382±0.001 g), of which 0.2 mg·kg-1, are grouped in environmental DM control groups. The growth of shrimp was reduced as the dietary DM levels increased. When shrimp were fed a diet containing a high dose of DM, a reduction in their antioxidant capacity was also observed. Enzyme activity and gene expression related to lipid metabolism in hepatopancreas and hemolymph indicated a significant interaction between dietary lipid levels and DM in the lipid metabolism of shrimp. The terms of detoxification-related genes (gst, sult, cyp1a1) were upregulated in shrimp fed the high-dose DM. Additionally, the presence of DM in the diet severely harmed the hepatopancreas and intestinal histological morphology. DM in the diet increased the susceptibility of shrimp to pathogens and induced intestine microbiota dysbiosis, disrupting the balance of inter-species interactions. DM was not detected in the muscle and hepatopancreas of the shrimp after six weeks of exposure. In conclusion, the presence of DM in feed reduced the growth performance and antioxidant capacity of shrimp, damaging intestinal health. DM was rapidly metabolized by shrimp.
Collapse
Affiliation(s)
- Kangyuan Qu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Menglin Shi
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liutong Chen
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yucheng Liu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinzhou Yao
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Zhou N, Lv W, Chen L, Chen K, He Q, Xie G, Ma J, Cao Y, Zhang B, Zhou X. Jujuboside A Attenuates Polycystic Ovary Syndrome Based on Estrogen Metabolism Through Activating AhR-mediated CYP1A2 Expression. Reprod Sci 2024; 31:2234-2245. [PMID: 38499949 DOI: 10.1007/s43032-024-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.
Collapse
Affiliation(s)
- Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Wenqiang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Linna Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Kexin Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Qing He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Guangyan Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Jiachen Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yijuan Cao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 199 South Jiefang Road, Xuzhou, 221004, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Ahmed WMS, Abdel-Azeem NM, Ibrahim MA, Helmy NA, Radi AM. Neuromodulatory effect of cinnamon oil on behavioural disturbance, CYP1A1, iNOStranscripts and neurochemical alterations induced by deltamethrin in rat brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111820. [PMID: 33385678 DOI: 10.1016/j.ecoenv.2020.111820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The objective of this study was to investigate the influence of deltamethrin (DLM)on brain function and to find whether DLM-induced neurotoxicity is prevented by the treatment with cinnamon oil. Four groups of ten Wistar albino male rats each were used. Group I (control) received saline only. Group II received cinnamon oil alone at 0.5 mg/kg B.W. intraperitonally, whereas Group III received orally DLM alone at 6 mg/kg B.W. Groups IV was treated with cinnamon oil plus DLM for 21 days to induce neurotoxicity. Rat behaviour, brain acetylcholine esterase (AChE), serotonin, oxidative stress profile were assessed. Serum sampling for the assessment of corticosterone concentration was also carried out. Finally, we demonstrate the gene expression of CYP1A1 and iNOS and the histological picture of the brain. Considering the behaviour assessment, DLM administration alone caused neurobehavioral deficits manifested by anxiety-like behavior which represented ina marked decrease in the sleeping frequency and duration, and marked increase the digging frequency and a wake non-active behavior duration. Moreover, the open field result showed a significant decrease in central square entries and duration. The neurochemical analysis revealed that DLM significantly suppressed AChE activity and elevated serotonin and corticosterone concentrations. Furthermore, results revealed thatthe brain reduced glutathione (GSH) content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were significantly altered in DLM treated rats. Neurochemical disturbances were confirmed by histopathological changes in the brain. Furthermore, DLM up-regulates the mRNA expression of brain CYP1A1 and iNOS. Co-treatment with cinnamon oil exhibited significant improvement in behavioural performance and the brain antioxidant capacities with an increase in AChE activity and diminished the concentration of serotonin, serum corticosterone and MDA. Cinnamon oil treatment resulted in down-regulation of CYP1A1 and iNOS and improve the histologically picture. In conclusion, cinnamon oil ameliorated DLM-induced neurotoxicity through preventing oxidative stress-induced genotoxicity and apoptosis of brain in rats.
Collapse
Affiliation(s)
- Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Naglaa M Abdel-Azeem
- Department of Animal and Poultry Management and Wealth Development, Faculty of Veterinary Medicine,Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza Egypt
| | - Nermeen A Helmy
- Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
4
|
Rabe KS, Niemeyer CM. Screening for cytochrome P450 reactivity with a reporter enzyme. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 987:149-56. [PMID: 23475675 DOI: 10.1007/978-1-62703-321-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification of novel substrates of cytochrome P450 enzymes by high-throughput screening assays is of utmost importance to further increase the scope of these enzymes for future applications. Most screens are either confined to individual substrate analogues or hampered by low throughput due to elaborate analysis techniques. Here we describe a general high-throughput screening assay that interrogates the activity of P450 enzymes with the aid of catalase as a reporter enzyme.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Dortmund, Germany
| | | |
Collapse
|
5
|
Chen MM, Coelho PS, Arnold FH. Utilizing Terminal Oxidants to Achieve P450-Catalyzed Oxidation of Methane. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100833] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Rabe KS, Spengler M, Erkelenz M, Müller J, Gandubert VJ, Hayen H, Niemeyer CM. Screening for cytochrome p450 reactivity by harnessing catalase as reporter enzyme. Chembiochem 2009; 10:751-7. [PMID: 19241405 DOI: 10.1002/cbic.200800750] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P450 enzymes are known to catalyze a variety of reactions that are difficult to perform by standard organic synthesis, such as the oxidation of unactivated C--C bonds. Cytochrome P450 enzymes can also be used in artificial systems in which organic peroxides act as cosubstrates. To find substrates that are converted by a certain P450 catalyst in the presence of an organic peroxide, various screening assays have been established, however, most of them are limited to one or only a few specific substrates. Here, we report a simple and rapid screening assay that works independently of the nature of the substrate and utilizes a previously undescribed reactivity of catalase as reporter enzyme. In an initial demonstration of this assay, we screened 180 enzyme/peroxide/substrate combinations for potential bioconversions. As shown by subsequent verification of the screening results with liquid chromatography/multistage mass spectrometry (LC/MS(n)), we were able to identify three new substrates for the enzyme CYP152A1 and at least two previously undescribed conversions by the enzyme CYP119.
Collapse
Affiliation(s)
- Kersten S Rabe
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|